Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

This article is part of the supplement: Selected articles from The Second Workshop on Data Mining of Next-Generation Sequencing in conjunction with the 2012 IEEE International Conference on Bioinformatics and Biomedicine

Open Access Research

Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment

Anurag Nagar1 and Michael Hahsler2

Author Affiliations

1 Department of Computer Science and Engineering, Southern Methodist University, Dallas, TX 750205, USA

2 Department of Engineering Management, Information, and Systems, Southern Methodist University, Dallas, TX 750205, USA

BMC Bioinformatics 2013, 14(Suppl 11):S2  doi:10.1186/1471-2105-14-S11-S2

Published: 13 September 2013

Abstract

Background

Next Generation Sequencing techniques are producing enormous amounts of biological sequence data and analysis becomes a major computational problem. Currently, most analysis, especially the identification of conserved regions, relies heavily on Multiple Sequence Alignment and its various heuristics such as progressive alignment, whose run time grows with the square of the number and the length of the aligned sequences and requires significant computational resources. In this work, we present a method to efficiently discover regions of high similarity across multiple sequences without performing expensive sequence alignment. The method is based on approximating edit distance between segments of sequences using p-mer frequency counts. Then, efficient high-throughput data stream clustering is used to group highly similar segments into so called quasi-alignments. Quasi-alignments have numerous applications such as identifying species and their taxonomic class from sequences, comparing sequences for similarities, and, as in this paper, discovering conserved regions across related sequences.

Results

In this paper, we show that quasi-alignments can be used to discover highly similar segments across multiple sequences from related or different genomes efficiently and accurately. Experiments on a large number of unaligned 16S rRNA sequences obtained from the Greengenes database show that the method is able to identify conserved regions which agree with known hypervariable regions in 16S rRNA. Furthermore, the experiments show that the proposed method scales well for large data sets with a run time that grows only linearly with the number and length of sequences, whereas for existing multiple sequence alignment heuristics the run time grows super-linearly.

Conclusion

Quasi-alignment-based algorithms can detect highly similar regions and conserved areas across multiple sequences. Since the run time is linear and the sequences are converted into a compact clustering model, we are able to identify conserved regions fast or even interactively using a standard PC. Our method has many potential applications such as finding characteristic signature sequences for families of organisms and studying conserved and variable regions in, for example, 16S rRNA.