Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Highly Accessed Research article

A comparison of methods for differential expression analysis of RNA-seq data

Charlotte Soneson1* and Mauro Delorenzi12

Author Affiliations

1 Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland

2 Département de formation et recherche, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland

For all author emails, please log on.

BMC Bioinformatics 2013, 14:91  doi:10.1186/1471-2105-14-91

Published: 9 March 2013

Abstract

Background

Finding genes that are differentially expressed between conditions is an integral part of understanding the molecular basis of phenotypic variation. In the past decades, DNA microarrays have been used extensively to quantify the abundance of mRNA corresponding to different genes, and more recently high-throughput sequencing of cDNA (RNA-seq) has emerged as a powerful competitor. As the cost of sequencing decreases, it is conceivable that the use of RNA-seq for differential expression analysis will increase rapidly. To exploit the possibilities and address the challenges posed by this relatively new type of data, a number of software packages have been developed especially for differential expression analysis of RNA-seq data.

Results

We conducted an extensive comparison of eleven methods for differential expression analysis of RNA-seq data. All methods are freely available within the R framework and take as input a matrix of counts, i.e. the number of reads mapping to each genomic feature of interest in each of a number of samples. We evaluate the methods based on both simulated data and real RNA-seq data.

Conclusions

Very small sample sizes, which are still common in RNA-seq experiments, impose problems for all evaluated methods and any results obtained under such conditions should be interpreted with caution. For larger sample sizes, the methods combining a variance-stabilizing transformation with the ‘limma’ method for differential expression analysis perform well under many different conditions, as does the nonparametric SAMseq method.

Keywords:
Differential expression; Gene expression; RNA-seq