Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

This article is part of the supplement: Proceedings of the Ninth Annual Research in Computational Molecular Biology (RECOMB) Satellite Workshop on Comparative Genomics

Open Access Proceedings

The evolution of the tape measure protein: units, duplications and losses

Mahdi Belcaid1, Anne Bergeron2 and Guylaine Poisson1*

Author Affiliations

1 Information and Computer Sciences, University of Hawaii, Honolulu, Hawaii, USA

2 LaCIM, Université du Québec à Montréal, Canada

For all author emails, please log on.

BMC Bioinformatics 2011, 12(Suppl 9):S10  doi:10.1186/1471-2105-12-S9-S10

Published: 5 October 2011

Abstract

Background

A large family of viruses that infect bacteria, called phages, is characterized by long tails used to inject DNA into their victims' cells. The tape measure protein got its name because the length of the corresponding gene is proportional to the length of the phage's tail: a fact shown by actually copying or splicing out parts of DNA in exemplar species. A natural question is whether there exist units for these tape measures, and if different tape measures have different units and lengths. Such units would allow us to retrace the evolution of tape measure proteins using their duplication/loss history. The vast number of sequenced phages genomes allows us to attack this problem with a comparative genomics approach.

Results

Here we describe a subset of phages whose tape measure proteins contain variable numbers of an 11 amino acids sequence repeat, aligned with sequence similarity, structural properties, and simple arithmetics. This subset provides a unique opportunity for the combinatorial study of phage evolution, without the added uncertainties of multiple alignments, which are trivial in this case, or of protein functions, that are well established. We give a heuristic that reconstructs the duplication history of these sequences, using divergent strains to discriminate between mutations that occurred before and after speciation, or lineage divergence. The heuristic is based on an efficient algorithm that gives an exhaustive enumeration of all possible parsimonious reconstructions of the duplication/speciation history of a single nucleotide. Finally, we present a method that allows, when possible, to discriminate between duplication and loss events.

Conclusions

Establishing the evolutionary history of viruses is difficult, in part due to extensive recombinations and gene transfers, and high mutation rates that often erase detectable similarity between homologous genes. In this paper, we introduce new tools to address this problem.