Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Highly Accessed Research article

nocoRNAc: Characterization of non-coding RNAs in prokaryotes

Alexander Herbig and Kay Nieselt*

Author Affiliations

Center for Bioinformatics Tübingen, University of Tübingen, Sand 14, 72076 Tübingen, Germany

For all author emails, please log on.

BMC Bioinformatics 2011, 12:40  doi:10.1186/1471-2105-12-40

Published: 31 January 2011

Abstract

Background

The interest in non-coding RNAs (ncRNAs) constantly rose during the past few years because of the wide spectrum of biological processes in which they are involved. This led to the discovery of numerous ncRNA genes across many species. However, for most organisms the non-coding transcriptome still remains unexplored to a great extent. Various experimental techniques for the identification of ncRNA transcripts are available, but as these methods are costly and time-consuming, there is a need for computational methods that allow the detection of functional RNAs in complete genomes in order to suggest elements for further experiments. Several programs for the genome-wide prediction of functional RNAs have been developed but most of them predict a genomic locus with no indication whether the element is transcribed or not.

Results

We present NOCORNAc, a program for the genome-wide prediction of ncRNA transcripts in bacteria. NOCORNAc incorporates various procedures for the detection of transcriptional features which are then integrated with functional ncRNA loci to determine the transcript coordinates. We applied RNAz and NOCORNAc to the genome of Streptomyces coelicolor and detected more than 800 putative ncRNA transcripts most of them located antisense to protein-coding regions. Using a custom design microarray we profiled the expression of about 400 of these elements and found more than 300 to be transcribed, 38 of them are predicted novel ncRNA genes in intergenic regions. The expression patterns of many ncRNAs are similarly complex as those of the protein-coding genes, in particular many antisense ncRNAs show a high expression correlation with their protein-coding partner.

Conclusions

We have developed NOCORNAc, a framework that facilitates the automated characterization of functional ncRNAs. NOCORNAc increases the confidence of predicted ncRNA loci, especially if they contain transcribed ncRNAs. NOCORNAc is not restricted to intergenic regions, but it is applicable to the prediction of ncRNA transcripts in whole microbial genomes. The software as well as a user guide and example data is available at http://www.zbit.uni-tuebingen.de/pas/nocornac.htm webcite.