Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Methodology article

BPDA - A Bayesian peptide detection algorithm for mass spectrometry

Youting Sun1, Jianqiu Zhang2*, Ulisses Braga-Neto1 and Edward R Dougherty134*

Author Affiliations

1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA

2 Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA

3 Computational Biology Division, Translational Genomics Research Institution, Phoenix, AZ 85004, USA

4 Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA

For all author emails, please log on.

BMC Bioinformatics 2010, 11:490  doi:10.1186/1471-2105-11-490

Published: 29 September 2010

Abstract

Background

Mass spectrometry (MS) is an essential analytical tool in proteomics. Many existing algorithms for peptide detection are based on isotope template matching and usually work at different charge states separately, making them ineffective to detect overlapping peptides and low abundance peptides.

Results

We present BPDA, a Bayesian approach for peptide detection in data produced by MS instruments with high enough resolution to baseline-resolve isotopic peaks, such as MALDI-TOF and LC-MS. We model the spectra as a mixture of candidate peptide signals, and the model is parameterized by MS physical properties. BPDA is based on a rigorous statistical framework and avoids problems, such as voting and ad-hoc thresholding, generally encountered in algorithms based on template matching. It systematically evaluates all possible combinations of possible peptide candidates to interpret a given spectrum, and iteratively finds the best fitting peptide signal in order to minimize the mean squared error of the inferred spectrum to the observed spectrum. In contrast to previous detection methods, BPDA performs deisotoping and deconvolution of mass spectra simultaneously, which enables better identification of weak peptide signals and produces higher sensitivities and more robust results. Unlike template-matching algorithms, BPDA can handle complex data where features overlap. Our experimental results indicate that BPDA performs well on simulated data and real MS data sets, for various resolutions and signal to noise ratios, and compares very favorably with commonly used commercial and open-source software, such as flexAnalysis, OpenMS, and Decon2LS, according to sensitivity and detection accuracy.

Conclusion

Unlike previous detection methods, which only employ isotopic distributions and work at each single charge state alone, BPDA takes into account the charge state distribution as well, thus lending information to better identify weak peptide signals and produce more robust results. The proposed approach is based on a rigorous statistical framework, which avoids problems generally encountered in algorithms based on template matching. Our experiments indicate that BPDA performs well on both simulated data and real data, and compares very favorably with commonly used commercial and open-source software. The BPDA software can be downloaded from http://gsp.tamu.edu/Publications/supplementary/sun10a/bpda webcite.