Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Research article

Prediction of nuclear proteins using SVM and HMM models

Manish Kumar and Gajendra PS Raghava*

Author Affiliations

Bioinformatics Centre, Institute of Microbial Technology, Sector 39A, Chandigarh-160036, India

For all author emails, please log on.

BMC Bioinformatics 2009, 10:22  doi:10.1186/1471-2105-10-22

Published: 19 January 2009

Abstract

Background

The nucleus, a highly organized organelle, plays important role in cellular homeostasis. The nuclear proteins are crucial for chromosomal maintenance/segregation, gene expression, RNA processing/export, and many other processes. Several methods have been developed for predicting the nuclear proteins in the past. The aim of the present study is to develop a new method for predicting nuclear proteins with higher accuracy.

Results

All modules were trained and tested on a non-redundant dataset and evaluated using five-fold cross-validation technique. Firstly, Support Vector Machines (SVM) based modules have been developed using amino acid and dipeptide compositions and achieved a Mathews correlation coefficient (MCC) of 0.59 and 0.61 respectively. Secondly, we have developed SVM modules using split amino acid compositions (SAAC) and achieved the maximum MCC of 0.66. Thirdly, a hidden Markov model (HMM) based module/profile was developed for searching exclusively nuclear and non-nuclear domains in a protein. Finally, a hybrid module was developed by combining SVM module and HMM profile and achieved a MCC of 0.87 with an accuracy of 94.61%. This method performs better than the existing methods when evaluated on blind/independent datasets. Our method estimated 31.51%, 21.89%, 26.31%, 25.72% and 24.95% of the proteins as nuclear proteins in Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, mouse and human proteomes respectively. Based on the above modules, we have developed a web server NpPred for predicting nuclear proteins http://www.imtech.res.in/raghava/nppred/ webcite.

Conclusion

This study describes a highly accurate method for predicting nuclear proteins. SVM module has been developed for the first time using SAAC for predicting nuclear proteins, where amino acid composition of N-terminus and the remaining protein were computed separately. In addition, our study is a first documentation where exclusively nuclear and non-nuclear domains have been identified and used for predicting nuclear proteins. The performance of the method improved further by combining both approaches together.