Email updates

Keep up to date with the latest news and content from BMC Bioinformatics and BioMed Central.

Open Access Methodology article

A compartmentalized approach to the assembly of physical maps

Serdar Bozdag1, Timothy J Close2 and Stefano Lonardi3*

Author Affiliations

1 National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

2 Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA

3 Department of Computer Science and Engineering, University of California, Riverside, CA 92521, USA

For all author emails, please log on.

BMC Bioinformatics 2009, 10:217  doi:10.1186/1471-2105-10-217

Published: 15 July 2009

Abstract

Background

Physical maps have been historically one of the cornerstones of genome sequencing and map-based cloning strategies. They also support marker assisted breeding and EST mapping. The problem of building a high quality physical map is computationally challenging due to unavoidable noise in the input fingerprint data.

Results

We propose a novel compartmentalized method for the assembly of high quality physical maps from fingerprinted clones. The knowledge of genetic markers enables us to group clones into clusters so that clones in the same cluster are more likely to overlap. For each cluster of clones, a local physical map is first constructed using FingerPrinted Contigs (FPC). Then, all the individual maps are carefully merged into the final physical map. Experimental results on the genomes of rice and barley demonstrate that the compartmentalized assembly produces significantly more accurate maps, and that it can detect and isolate clones that would induce "chimeric" contigs if used in the final assembly.

Conclusion

The software is available for download at http://www.cs.ucr.edu/~sbozdag/assembler/ webcite