Skip to main content

Inequalities for α-fractional differentiable functions

Abstract

In this article, we present an identity and several Hermite-Hadamard type inequalities for conformable fractional integrals. As applications, we establish some inequalities for certain special means of two positive real numbers and give the error estimations for the trapezoidal formula.

1 Introduction

A real-valued function \(\psi: \mathrm{I}\subseteq \mathbb{R}\rightarrow\mathbb{R}\) is said to be convex on I if the inequality

$$ \psi\bigl(\theta\xi+(1-\theta)\zeta\bigr)\leq\theta \psi(\xi)+(1-\theta)\psi( \zeta) $$
(1.1)

holds for all \(\xi, \zeta\in\mathrm{I}\) and \(\theta\in[0, 1]\). ψ is said to be concave on I if inequality (1.1) is reversed.

Let \(\psi: \mathrm{I}\subseteq\mathbb{R} \rightarrow\mathbb{R}\) be a convex function on the interval I, and \(c_{1}, c_{2} \in\mathrm{I}\) with \(c_{1}< c_{2}\). Then the double inequality

$$ \psi \biggl(\frac{c_{1}+c_{2}}{2} \biggr)\leq\frac{1}{c_{2}-c_{1}} \int _{c_{1}}^{c_{2}}\psi(\xi)\,d\xi\leq\frac{\psi(c_{1})+\psi(c_{2})}{2} $$
(1.2)

is known in the literature as the Hermite-Hadamard inequality for convex functions [13]. Both inequalities hold in the reversed direction if ψ is concave on the interval I. In particular, many classical inequalities for means can be derived from (1.2) for appropriate particular selections of the function ψ.

Recently, the improvements, generalizations, refinements and applications for the Hermite-Hadamard inequality have attracted the attention of many researchers [422].

Dragomir and Agarwal [23] proved the following results connected with the right hand part of (1.2).

Theorem 1.1

See [23], Lemma 2.1

Let \(\psi:\mathrm{I}^{\circ}\subseteq\mathbb{R}\rightarrow \mathbb{R}\) be a differentiable mapping on  \(\mathrm{I}^{\circ}\). Then the identity

$$ \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{1}{c_{2}-c_{1}} \int _{c_{1}}^{c_{2}}\psi(\xi)\,d\xi =\frac{c_{2}-c_{1}}{2} \int_{0}^{1}(1-2\theta)\psi^{\prime}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)\,d\theta $$

holds for all \(c_{1}, c_{2}\in\mathrm{I}^{\circ}\) with \(c_{1}< c_{2}\) if \(\psi^{\prime}\in\mathrm{L}[c_{1}, c_{2}]\), where \(\mathrm{I}^{\circ}\) denotes the interior of I.

Theorem 1.2

See [23], Theorem 2.2

Let \(\psi:\mathrm{I}^{\circ}\subseteq\mathbb{R}\rightarrow \mathbb{R}\) be a differentiable mapping on  \(\mathrm{I}^{\circ}\). Then the inequality

$$ \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{1}{c_{2}-c_{1}} \int _{c_{1}}^{c_{2}} \psi(\xi)\,d\xi \biggr\vert \leq \frac{(c_{2}-c_{1})( \vert \psi^{\prime }(c_{1}) \vert + \vert \psi^{\prime}(c_{2}) \vert )}{8} $$

holds for \(c_{1}, c_{2}\in\mathrm{I}^{\circ}\) with \(c_{1}< c_{2}\) if \(\vert \psi^{\prime} \vert \) is convex on \([c_{1}, c_{2}]\).

Making use of Theorem 1.1, Pearce and Pečarić [24] established Theorem 1.3 as follows.

Theorem 1.3

See [24], Theorem 1

Let \(c_{1}, c_{2}\in\mathrm{I}\subseteq\mathbb{R}\) with \(c_{1}< c_{2}\), \(\psi:\mathrm{I}^{\circ}\subseteq \mathbb{R}\rightarrow\mathbb{R}\) be a differentiable mapping on \(\mathrm{I}^{\circ}\) and \(q\geq1\). Then the inequality

$$ \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{1}{c_{2}-c_{1}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d\xi \biggr\vert \leq \frac{c_{2}-c_{1}}{4} \biggl[\frac{ \vert \psi^{\prime}(c_{1}) \vert ^{q}+ \vert \psi^{\prime}(c_{2}) \vert ^{q}}{2} \biggr]^{1/q} $$

is valid if the mapping \(\vert \psi^{\prime} \vert ^{q}\) is convex on the interval \([c_{1}, c_{2}]\).

Next, we recall several elementary definitions and important results in the theory of conformable fractional calculus, which will be used throughout the article, we refer the interested reader to [2532].

The conformable fractional derivative of order \(0<\alpha\leq1\) for a function \(\psi: (0, \infty)\rightarrow\mathbb{R}\) at \(\xi>0\) is defined by

$$ \mathrm{D}_{\alpha}(\psi) (\xi)=\lim_{\epsilon\rightarrow 0} \frac{\psi(\xi+\epsilon\xi^{1-\alpha})-\psi(\xi)}{\epsilon}, $$

and the fractional derivative at 0 is defined as \(\mathrm{D}_{\alpha}(\psi)(0)=\lim_{\xi\rightarrow 0^{+}}\mathrm{D}_{\alpha}(\psi)(\xi)\).

The (left) fractional derivative starting from \(c_{1}\) of a function \(\psi: [c_{1}, \infty)\rightarrow\mathbb{R}\) of order \(0<\alpha \leq1\) is defined by

$$ \mathrm{D}_{\alpha}^{c_{1}}(\psi) (\xi)=\lim_{\epsilon\rightarrow 0} \frac{\psi(\xi+\epsilon (\xi-c_{1})^{1-\alpha})-\psi(\xi)}{\epsilon}, $$

and we write \(\mathrm{D}_{\alpha}^{c_{1}}(\psi)=\mathrm{D}_{\alpha}^{0}(\psi)=\mathrm {D}_{\alpha}(\psi)\) if \(c_{1}=0\). For more details see [26].

Let \(\alpha\in(0, 1]\) and \(\psi, \phi\) be α-differentiable at \(\xi>0\). Then we have

$$\begin{aligned}& \frac{d_{\alpha}}{d_{\alpha}\xi} \bigl(\xi^{n} \bigr) =n\xi^{n-\alpha}, \quad n \in\mathbb{R}, \\& \frac{d_{\alpha}}{d_{\alpha}\xi}(c) =0, \quad c\in\mathbb{R}, \\& \frac{d_{\alpha}}{d_{\alpha}\xi} \bigl(c_{1} \psi(\xi)+ c_{2} \phi(\xi) \bigr) =c_{1} \frac{d_{\alpha}}{d_{\alpha}\xi}\bigl(\psi(\xi)\bigr)+c_{2} \frac{d_{\alpha}}{d_{\alpha}\xi}\bigl(\phi(\xi)\bigr), \quad c_{1}, c_{2} \in\mathbb{R}, \\& \frac{d_{\alpha}}{d_{\alpha}\xi} \bigl(\psi(\xi)\phi(\xi) \bigr) =\psi(\xi) \frac{d_{\alpha}}{d_{\alpha}\xi} \bigl(\phi(\xi)\bigr)+\phi(\xi) \frac{d_{\alpha}}{d_{\alpha}\xi}\bigl(\psi(\xi)\bigr), \\& \frac{d_{\alpha}}{d_{\alpha}\xi} \biggl(\frac{\psi(\xi)}{\phi(\xi)} \biggr) =\frac{\phi(\xi) \frac{d_{\alpha}}{d_{\alpha}\xi}(\psi(\xi))-\phi(\xi) \frac{d_{\alpha}}{d_{\alpha}\xi}(\psi(\xi))}{(\phi(\xi))^{2}}, \\& \frac{d_{\alpha}}{d_{\alpha}\xi} \bigl(\psi(\phi) (\xi) \bigr)=\psi'\bigl(\phi ( \xi)\bigr)\frac{d_{\alpha}}{d_{\alpha}\xi}\bigl(\phi(\xi)\bigr), \end{aligned}$$
(1.3)

where ψ is differentiable at \(\phi(\xi)\) in equation (1.3). In particular,

$$ \frac{d_{\alpha}}{d_{\alpha}\xi} \bigl(\psi(\xi) \bigr)=\xi^{1-\alpha} \frac{d}{d\xi} \bigl(\psi(\xi)\bigr) $$

if ψ is differentiable.

Let \(\alpha\in(0, 1] \) and \(0\leq c_{1} < c_{2}\). A function \(\psi : [c_{1}, c_{2}] \rightarrow\mathbb{R} \) is said to be α-fractional integrable on \([c_{1}, c_{2}]\) if the integral

$$ \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha}\xi= \int_{c_{1}}^{c_{2}}\psi(\xi )\xi^{\alpha-1}\,d\xi $$

exists and is finite. All the α-fractional integrable functions on \([c_{1}, c_{2}]\) are denoted by \(\mathrm{L}_{\alpha}^{1}([c_{1}, c_{2}])\).

It is well known that

$$ \int_{c_{1}}^{c_{2}}\psi(\xi)\mathrm{D}_{\alpha}^{c_{1}}( \phi) (\xi )\,d_{\alpha}\xi=\psi\phi| _{c_{1}}^{c_{2}} - \int_{c_{1}}^{c_{2}}\phi(\xi)\mathrm{D}_{\alpha}^{c_{1}}( \psi) (\xi )\,d_{\alpha}\xi $$

if \(\psi, \phi: [c_{1}, c_{2}] \rightarrow\mathbb{R}\) are two functions such that ψϕ is differentiable.

Very recently, Anderson [33] established a Hermite-Hadamard type inequality for fractional differentiable functions as follows.

Theorem 1.4

Let \(\alpha\in(0, 1]\) and \(\psi: [c_{1}, c_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function. Then the inequality

$$ \frac{\alpha}{c_{2}^{\alpha}-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi )\,d_{\alpha}\xi\leq \frac{\psi(c_{1})+\psi(c_{2})}{2} $$
(1.4)

holds if \(\mathrm{D}_{\alpha}(\psi)\) is increasing on \([c_{1}, c_{2}]\). Moreover, if the function ψ is decreasing on \([c_{1}, c_{2}]\), then one has

$$ \psi \biggl(\frac{c_{1}+c_{2}}{2} \biggr)\leq\frac{\alpha}{c_{2}^{\alpha }-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha}\xi. $$
(1.5)

Remark 1.5

We clearly see that inequalities (1.4) and (1.5) reduce to inequality (1.2) if \(\alpha=1\).

The main purpose of the article is to present an identity and several Hermite-Hadamard type inequalities for conformable fractional integrals, establish some inequalities for certain special means of two positive real numbers and give the error estimations for the trapezoidal formula.

2 Main results

In order to prove our main results we need a lemma, which we present in this section.

Lemma 2.1

Let \(\alpha\in(0, 1]\), \(c_{1}, c_{2} \in\mathbb{R}\) with \(0\leq c_{1}< c_{2}\) and \(\psi:[c_{1}, c_{2}]\rightarrow\mathbb {R}\) be an α-fractional differentiable function on \((c_{1}, c_{2})\). Then the identity

$$\begin{aligned} &\frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{\alpha}{c_{2}^{\alpha }-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha}\xi \\ &\quad =\frac{(c_{2}-c_{1})}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int _{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{2\alpha-1}-c_{2}^{\alpha}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha-1} \bigr) \\ &\quad\quad{} \times\mathrm{D}_{\alpha}(\psi) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)\theta^{1-\alpha}\,d_{\alpha}\theta \\ & \quad\quad{} + \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{2\alpha-1}-c_{1}^{\alpha}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha-1} \bigr) \\ &\quad\quad{} \times\mathrm{D}_{\alpha}(\psi) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)\theta^{1-\alpha}\,d_{\alpha}\theta \biggr] \end{aligned}$$

holds if \(\mathrm{D}_{\alpha}(\psi)\in \mathrm{L}_{\alpha}^{1}([c_{1}, c_{2}])\).

Proof

Let \(\xi=\theta c_{1}+(1-\theta)c_{2}\). Then making use of integration by parts, we get

$$\begin{aligned} & \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{2\alpha-1}-c_{2}^{\alpha}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha-1} \bigr) \mathrm{D} _{\alpha}(\psi) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)\,d\theta \\ &\quad\quad{} + \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{2\alpha-1}-c_{1}^{\alpha}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha-1} \bigr) \mathrm{D} _{\alpha}(\psi) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)\,d\theta \\ &\quad = \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{2}^{\alpha} \bigr)\psi'\bigl(\theta c_{1}+(1-\theta)c_{2} \bigr)\,d\theta \\ &\quad\quad{} + \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \psi'\bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)\,d\theta \\ &\quad = \bigl(\bigl(\theta c_{1}+(1-\theta)c_{2} \bigr)^{\alpha}-c_{2}^{\alpha} \bigr)\frac{\psi(\theta c_{1}+(1-\theta)c_{2})}{c_{1}-c_{2}} \bigg| _{0}^{1} \\ &\quad\quad{} - \int_{0}^{1}\alpha\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha-1}(c_{1}-c_{2}) \frac{\psi(\theta c_{1}+(1-\theta)c_{2})}{c_{1}-c_{2}}\,d\theta \\ &\quad\quad{} + \bigl(\bigl(\theta c_{1}+(1-\theta)c_{2} \bigr)^{\alpha}-c_{1}^{\alpha} \bigr)\frac{\psi(\theta c_{1}+(1-\theta)c_{2})}{c_{1}-c_{2}} \bigg| _{0}^{1} \\ &\quad\quad{} - \int_{0}^{1}\alpha\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha-1}(c_{1}-c_{2}) \frac{\psi(\theta c_{1}+(1-\theta)c_{2})}{c_{1}-c_{2}}\,d\theta \\ &\quad =\frac{1}{c_{2}-c_{1}} \biggl[\bigl(c_{2}^{\alpha}-c_{1}^{\alpha} \bigr)\psi (c_{1})-\alpha \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha}\xi \biggr] \\ &\quad\quad{} +\frac{1}{c_{2}-c_{1}} \biggl[\bigl(c_{2}^{\alpha}-c_{1}^{\alpha} \bigr)\psi(c_{2}) -\alpha \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha}\xi \biggr] \\ &\quad =\frac{c_{2}^{\alpha}-c_{1}^{\alpha}}{c_{2}-c_{1}} \bigl(\psi(c_{1})+\psi(c_{2}) \bigr) - \frac{2\alpha}{c_{2}-c_{1}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha}\xi. \end{aligned}$$
(2.1)

Therefore, Lemma 2.1 follows easily from (2.1). □

Remark 2.2

We clearly see that the identity given in Lemma 2.1 reduces to the identity given in Theorem 1.1 if \(\alpha=1\).

Theorem 2.3

Let \(\alpha\in(0, 1]\), \(c_{1}, c_{2}\in\mathbb{R}\) with \(0\leq c_{1} < c_{2}\) and \(\psi:[c_{1}, c_{2}] \rightarrow\mathbb{R}\) be an α-differentiable function. Then the inequality

$$\begin{aligned} & \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{\alpha }{c_{2}^{\alpha}-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha }\xi \biggr\vert \\ &\quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[\frac{( \vert \psi^{\prime}(c_{1}) \vert + \vert \psi ^{\prime}(c_{2}) \vert ) (5c_{2}^{\alpha}-7c_{1}^{\alpha}+c_{1}c_{2}^{\alpha -1}+c_{1}^{\alpha-1}c_{2} )}{12} \biggr] \end{aligned}$$
(2.2)

holds if \(\mathrm{D} _{\alpha}(\psi)\in \mathrm{L}_{\alpha}^{1}([c_{1}, c_{2}])\) and \(\vert \psi^{\prime } \vert \) is convex on \([c_{1}, c_{2}]\).

Proof

It follows from Lemma 2.1 and the convexities of the functions \(\xi\rightarrow\xi^{\alpha-1}\) and \(\xi\rightarrow-\xi^{\alpha}\) on \((0, \infty)\) together with the convexity of \(\vert \psi^{\prime } \vert \) on \([c_{1}, c_{2}]\) that

$$\begin{aligned}& \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{\alpha }{c_{2}^{\alpha}-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha }\xi \biggr\vert \\& \quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int _{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \bigl\vert \psi ^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \\& \quad\quad{} + \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \biggr] \\& \quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int _{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha-1}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)-c_{1}^{\alpha} \bigr) \bigl\vert \psi^{\prime }\bigl(\theta c_{1}+(1-\theta)c_{2}\bigr) \bigr\vert \,d\theta \\& \quad\quad{} + \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl((1-\theta)c_{1}^{\alpha}+\theta c_{2}^{\alpha} \bigr) \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \biggr] \\& \quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int _{0}^{1} \bigl(\bigl((1-\theta)c_{1}^{\alpha-1}+ \theta c_{2}^{\alpha-1}\bigr) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)-c_{1}^{\alpha} \bigr) \bigl\vert \psi^{\prime }\bigl(\theta c_{1}+(1-\theta)c_{2}\bigr) \bigr\vert \,d\theta \\& \quad\quad{} + \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl((1-\theta)c_{1}^{\alpha}+\theta c_{2}^{\alpha} \bigr) \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \biggr] \\& \quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int _{0}^{1} \bigl(\bigl((1-\theta)c_{1}^{\alpha-1}+ \theta c_{2}^{\alpha-1}\bigr) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)-c_{1}^{\alpha} \bigr) \\& \quad\quad{}\times \bigl[(1- \theta) \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert +\theta \bigl\vert \psi'(c_{2}) \bigr\vert \bigr]\,d\theta \\& \quad\quad{} + \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl((1-\theta)c_{1}^{\alpha}+\theta c_{2}^{\alpha} \bigr) \bigr) \bigl[(1-\theta) \bigl\vert \psi^{\prime }(c_{1}) \bigr\vert +\theta \bigl\vert \psi'(c_{2}) \bigr\vert \bigr]\,d\theta \biggr] \\& \quad =\frac{c_{2}-c_{1}}{c_{2}^{\alpha}-c_{1}^{\alpha}} \biggl[\frac {1}{4}c_{1}^{\alpha} \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert + \frac{1}{12}c_{1}^{\alpha} \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert +\frac{1}{12}c_{1}c_{2}^{\alpha-1} \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert + \frac{1}{12}c_{1}c_{2}^{\alpha-1} \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert \\& \quad\quad{} +\frac{1}{12}c_{1}^{\alpha-1}c_{2} \bigl\vert \psi^{\prime }(c_{1}) \bigr\vert +\frac{1}{12}c_{1}^{\alpha-1}c_{2} \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert +\frac{1}{12}c_{2}^{\alpha} \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert + \frac{1}{4}c_{2}^{\alpha} \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert \\& \quad\quad{} -\frac{1}{2}c_{1}^{\alpha} \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert - \frac{1}{2}c_{1}^{\alpha} \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert +\frac{1}{2}c_{2}^{\alpha} \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert +\frac{1}{2}c_{2}^{\alpha} \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert - \frac{1}{3}c_{1}^{\alpha} \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert \\& \quad\quad{} -\frac{1}{6}c_{1}^{\alpha} \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert - \frac{1}{6}c_{2}^{\alpha} \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert -\frac{1}{3}c_{2}^{\alpha} \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert \biggr] \\& \quad =\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[\frac{( \vert \psi^{\prime}(c_{1}) \vert + \vert \psi ^{\prime}(c_{2}) \vert ) (5c_{2}^{\alpha}-7c_{1}^{\alpha}+c_{1}c_{2}^{\alpha -1}+c_{1}^{\alpha-1}c_{2} )}{12} \biggr]. \end{aligned}$$

 □

Remark 2.4

Let \(\alpha=1\). Then inequality (2.2) becomes

$$ \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{1}{c_{2}-c_{1}} \int _{c_{1}}^{c_{2}}\psi(\xi)\,d\xi \biggr\vert \leq \frac{c_{2}-c_{1}}{4} \bigl[ \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert + \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert \bigr]. $$

Theorem 2.5

Let \(\alpha\in(0, 1]\), \(q>1\), \(c_{1}, c_{2}\in\mathbb{R}\) with \(0\leq c_{1} < c_{2}\) and \(\psi:[c_{1}, c_{2}] \rightarrow \mathbb{R}\) be an α-differentiable function on \((c_{1}, c_{2})\). Then the inequality

$$\begin{aligned} & \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{\alpha }{c_{2}^{\alpha}-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha }\xi \biggr\vert \\ &\quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \bigl[ \bigl(\mathrm{A}_{1}(\alpha) \bigr)^{1-1/q} \bigl\{ \mathrm {A}_{2}(\alpha) \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q}+ \mathrm{A}_{3} (\alpha) \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert ^{q} \bigr\} ^{1/q} \\ &\quad\quad{} + \bigl(\mathrm{B}_{1}(\alpha) \bigr)^{1-1/q} \bigl\{ \mathrm {B}_{2}(\alpha) \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q} +\mathrm{B}_{3}(\alpha) \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert ^{q} \bigr\} ^{1/q} \bigr] \end{aligned}$$
(2.3)

is valid if \(\mathrm{D}_{\alpha}(\psi)\in \mathrm{L}_{\alpha}^{1}([c_{1}, c_{2}])\) and \(\vert \psi^{\prime } \vert ^{q}\) is convex on \([c_{1}, c_{2}]\), where

$$\begin{aligned}& \mathrm{A}_{1}(\alpha)= \biggl[\frac{c_{1}^{\alpha+1}-c_{2}^{\alpha +1}}{(\alpha+1)(c_{1}-c_{2})} \biggr]-c_{1}^{\alpha},\quad \quad \mathrm{B}_{1}( \alpha)=c_{2}^{\alpha}- \biggl[\frac{c_{1}^{\alpha +1}-c_{2}^{\alpha+1}}{(\alpha+1)(c_{1}-c_{2})} \biggr], \\ & \mathrm{A}_{2}(\alpha)= \biggl[\frac{-c_{2}^{\alpha+1}}{(\alpha+1)(c_{1}-c_{2})}+ \frac{c_{1}^{\alpha+2}-c_{2}^{\alpha+2}}{(\alpha+1)(\alpha +2)(c_{1}-c_{2})^{2}}-\frac{c_{1}^{\alpha}}{2} \biggr], \\ & \mathrm{B}_{2}(\alpha)= \biggl[\frac{c_{2}^{\alpha}}{2}+\frac {c_{2}^{\alpha+1}}{(\alpha+1)(c_{1}-c_{2})} +\frac{c_{1}^{\alpha+2}-c_{2}^{\alpha+2}}{(\alpha+1)(\alpha +2)(c_{1}-c_{2})^{2}} \biggr], \\ & \mathrm{A}_{3}(\alpha)= \biggl[\frac{c_{1}^{\alpha+1}}{(\alpha+1)(c_{1}-c_{2})} - \frac{c_{1}^{\alpha+2}-c_{2}^{\alpha+2}}{(\alpha+1)(\alpha +2)(c_{1}-c_{2})^{2}}-\frac{c_{1}^{\alpha}}{2} \biggr], \\ & \mathrm{B}_{3}(\alpha)= \biggl[\frac{c_{2}^{\alpha}}{2}-\frac {c_{1}^{\alpha+1}}{(\alpha+1)(c_{1}-c_{2})}+ \frac{c_{1}^{\alpha+2}-c_{2}^{\alpha+2}}{(\alpha+1)(\alpha +2)(c_{1}-c_{2})^{2}} \biggr]. \end{aligned}$$

Proof

From Lemma 2.1 and the well-known Hölder mean inequality together with the convexity of \(\vert \psi^{\prime} \vert ^{q}\) on the interval \([c_{1}, c_{2}]\) we clearly see that

$$\begin{aligned} & \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{\alpha }{c_{2}^{\alpha}-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha }\xi \biggr\vert \\ &\quad = \biggl\vert \frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{2\alpha-1}-c_{1}^{\alpha}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha-1} \bigr) \\ &\quad\quad{}\times \mathrm{D}_{\alpha}(\psi) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)\,d\theta \\ &\quad\quad{} + \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{2\alpha-1}-c_{2}^{\alpha}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha-1} \bigr) \mathrm{D}_{\alpha}(\psi) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)\,d\theta \biggr] \biggr\vert \\ &\quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int _{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \bigl\vert \psi ^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \\ &\quad\quad{} + \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \biggr], \end{aligned}$$
(2.4)
$$\begin{aligned} & \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \bigl\vert \psi ^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \\ &\quad \leq \biggl( \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr)\,d\theta \biggr)^{1-1/q} \\ &\quad\quad{} \times \biggl( \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \bigl\vert \psi '\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert ^{q}\,d\theta \biggr)^{1/q}, \end{aligned}$$
(2.5)
$$\begin{aligned} & \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \\ &\quad \leq \biggl( \int_{0}^{1} \bigl( c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr)\,d\theta \biggr)^{1-1/q} \\ &\quad\quad{} \times \biggl( \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert ^{q}\,d\theta \biggr)^{1/q}, \end{aligned}$$
(2.6)
$$\begin{aligned} & \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \bigl\vert \psi ^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert ^{q}\,d\theta \\ &\quad \leq \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \bigl[(1-\theta) \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q}+\theta \bigl\vert \psi^{\prime }(c_{2}) \bigr\vert ^{q} \bigr]\,d\theta \\ &\quad = \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q} \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) (1-\theta)\,d\theta \\ &\quad\quad{} + \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert ^{q} \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \theta \,d\theta \\ &\quad = \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q} \biggl[\frac {-c_{2}^{\alpha+1}}{(\alpha+1)(c_{1}-c_{2})}+ \frac{c_{1}^{\alpha+2}-c_{2}^{\alpha+2}}{(\alpha+1)(\alpha +2)(c_{1}-c_{2})^{2}}-\frac{c_{1}^{\alpha}}{2} \biggr] \\ &\quad\quad{} + \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert ^{q} \biggl[\frac{\alpha +1}{(\alpha+1)(c_{1}-c_{2})} -\frac{c_{1}^{\alpha+2}-c_{2}^{\alpha+2}}{(\alpha+1)(\alpha +2)(c_{1}-c_{2})^{2}}-\frac{c_{1}^{\alpha}}{2} \biggr], \end{aligned}$$
(2.7)
$$\begin{aligned} & \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert ^{q}\,d\theta \\ &\quad \leq \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) \bigl[(1-\theta) \bigl\vert \psi ^{\prime}(c_{1}) \bigr\vert ^{q}+\theta \bigl\vert \psi^{\prime }(c_{2}) \bigr\vert ^{q} \bigr]\,d\theta \\ &\quad = \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q} \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) (1-\theta)\,d\theta \\ &\quad\quad{} + \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert ^{q} \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr)\theta \,d\theta \\ &\quad = \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q} \biggl[\frac {c_{2}^{\alpha}}{2}+\frac{c_{2}^{\alpha+1}}{(\alpha+1) (c_{1}-c_{2})}+\frac{c_{1}^{\alpha+2}-c_{2}^{\alpha+2}}{(\alpha +1)(\alpha+2)(c_{1}-c_{2})^{2}} \biggr] \\ &\quad\quad{} + \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert ^{q} \biggl[\frac {c_{2}^{\alpha}}{2}-\frac{c_{1}^{\alpha+1}}{ (\alpha+1)(c_{1}-c_{2})}+\frac{c_{1}^{\alpha+2}-c_{2}^{\alpha +2}}{(\alpha+1)(\alpha+2)(c_{1}-c_{2})^{2}} \biggr]. \end{aligned}$$
(2.8)

Therefore, inequality (2.3) follows easily from (2.4)-(2.8). □

Remark 2.6

Let \(\alpha=1\). Then inequality (2.3) becomes

$$\begin{aligned} & \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{1}{c_{2}-c_{1}} \int _{c_{1}}^{c_{2}}\psi(\xi)\,d\xi \biggr\vert \\ &\quad \leq\frac{1}{2} \biggl(\frac{c_{2}-c_{1}}{2} \biggr)^{1-1/q} \bigl[ \bigl\{ \mathrm{A}_{2}(1) \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q}+ \mathrm{A}_{3}(1) \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert ^{q} \bigr\} ^{1/q} \\ &\quad\quad{} + \bigl\{ \mathrm{B}_{2}(1) \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert ^{q}+\mathrm{B}_{3}(1) \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert ^{q} \bigr\} ^{1/q} \bigr] \end{aligned}$$

with

$$\begin{aligned}& \mathrm{A}_{2}(1)=\frac{c_{2}-c_{1}}{3},\quad\quad \mathrm{B}_{2}(1)= \frac {(c_{1}+c_{2})^{2}+2c_{1}c_{2}}{6(c_{1}-c_{2})}, \\ & \mathrm{A}_{3}(1)=\frac{c_{2}-c_{1}}{6}, \quad \quad \mathrm{B}_{3}(1)= \frac{c_{2}-c_{1}}{3}. \end{aligned}$$

Theorem 2.7

Let \(\alpha\in(0, 1]\), \(q>1\), \(c_{1}, c_{2}\in\mathbb{R} \) with \(0\leq c_{1} < c_{2}\) and \(\psi:[c_{1}, c_{2}] \rightarrow \mathbb{R}\) be an α-differentiable function on \((c_{1}, c_{2})\). Then the inequality

$$\begin{aligned} & \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{\alpha }{c_{2}^{\alpha}-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha }\xi \biggr\vert \\ &\quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \mathrm{A}_{1}(\alpha) \psi^{\prime} \biggl(\frac{\mathrm{C}_{1}(\alpha )}{\mathrm{A}_{1}(\alpha)} \biggr) +\mathrm{B}_{1}( \alpha)\psi^{\prime} \biggl(\frac{\mathrm{C}_{2}(\alpha )}{\mathrm{B}_{1}(\alpha)} \biggr) \biggr] \end{aligned}$$
(2.9)

holds if \(\mathrm{D}_{\alpha}(\psi)\in \mathrm{L}_{\alpha}^{1}([c_{1}, c_{2}])\) and \(\vert \psi^{\prime } \vert ^{q}\) is concave on \([c_{1}, c_{2}]\), where \(\mathrm{A}_{1}(\alpha)\) and \(\mathrm{B}_{1}(\alpha)\) are defined as in Theorem 2.5, and \(\mathrm{C}_{1}(\alpha)\) and \(\mathrm{C}_{2}(\alpha)\) are defined by

$$ \mathrm{C}_{1}(\alpha)= \biggl[\frac{c_{1}^{\alpha+2}-c_{2}^{\alpha +2}}{(\alpha+2)(c_{1}-c_{2})}-\frac{c_{1}^{\alpha}(c_{1}-c_{2})}{2} \biggr],\quad \quad \mathrm{C}_{2}(\alpha)= \biggl[\frac{c_{2}^{\alpha}(c_{1}+c_{2})}{2}- \frac {c_{1}^{\alpha+2}-c_{2}^{\alpha+2}}{(\alpha+2)(c_{1}-c_{2})} \biggr]. $$

Proof

It follows from the concavity of \(\vert \psi' \vert ^{q}\) and the Hölder mean inequality that

$$\begin{aligned}& \bigl(\theta \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert +(1- \theta) \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert \bigr)^{q}\leq\theta \bigl\vert \psi ^{\prime}(c_{1}) \bigr\vert ^{q}+(1-\theta) \bigl\vert \psi^{\prime }(c_{2}) \bigr\vert ^{q} \leq \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1-\theta)c_{2}\bigr) \bigr\vert ^{q}, \\& \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \geq \theta \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert +(1-\theta) \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert , \end{aligned}$$

which implies that \(\vert \psi' \vert \) is also concave. Making use of Lemma 2.1 and the Jensen integral inequality, we have

$$\begin{aligned} & \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{\alpha }{c_{2}^{\alpha}-c_{1}^{\alpha}} \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha }\xi \biggr\vert \\ &\quad = \biggl\vert \frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{2\alpha-1}-c_{1}^{\alpha}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha-1} \bigr) \\ &\quad\quad{}\times \mathrm{D} _{\alpha}(\psi) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)\,d\theta \\ &\quad\quad{} + \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{2\alpha-1}-c_{2}^{\alpha}\bigl( \theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha-1} \bigr) \mathrm{D}_{\alpha}(\psi) \bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)\,d\theta \biggr] \biggr\vert \\ &\quad \leq\frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \biggl[ \int _{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \bigl\vert \psi ^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \\ &\quad\quad{} + \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \biggr], \end{aligned}$$
(2.10)
$$\begin{aligned} & \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr) \bigl\vert \psi ^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \\ &\quad \leq \biggl( \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha}-c_{1}^{\alpha} \bigr)\,d\theta \biggr) \\ &\quad\quad{} \times\psi^{\prime} \biggl(\frac{\int_{0}^{1} ((\theta c_{1}+(1-\theta)c_{2})^{\alpha}-c_{1}^{\alpha} ) (\theta c_{1}+(1-\theta)c_{2})\,d\theta}{\int_{0}^{1} ((\theta c_{1}+(1-\theta)c_{2})^{\alpha}-c_{1}^{\alpha} )\,d\theta} \biggr) \\ &\quad =\mathrm{A}_{1}(\alpha)\psi^{\prime} \biggl(\frac{\mathrm{C}_{1}(\alpha )}{\mathrm{A}_{1}(\alpha)} \biggr), \end{aligned}$$
(2.11)
$$\begin{aligned} & \int_{0}^{1} \bigl(c_{2}^{\alpha}- \bigl(\theta c_{1}+(1-\theta)c_{2}\bigr)^{\alpha} \bigr) \bigl\vert \psi^{\prime}\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr) \bigr\vert \,d\theta \\ &\quad \leq \biggl(c_{2}^{\alpha}- \int_{0}^{1} \bigl(\bigl(\theta c_{1}+(1- \theta)c_{2}\bigr)^{\alpha} \bigr)\,d\theta \biggr) \\ &\quad\quad{} \times\psi^{\prime} \biggl(\frac{\int_{0}^{1} (c_{2}^{\alpha}-(\theta c_{1}+(1-\theta)c_{2})^{\alpha} )(\theta c_{1}+(1-\theta)c_{2})\,d\theta}{ \int_{0}^{1} (c_{2}^{\alpha}-(\theta c_{1}+(1-\theta)c_{2})^{\alpha} )\,d\theta} \biggr) \\ &\quad =\mathrm{B}_{1}(\alpha)\psi^{\prime} \biggl(\frac{\mathrm{C}_{2}(\alpha )}{\mathrm{B}_{1}(\alpha)} \biggr). \end{aligned}$$
(2.12)

Therefore, inequality (2.9) follows easily from (2.10)-(2.12). □

Remark 2.8

Let \(\alpha=1\). Then inequality (2.9) leads to

$$\begin{aligned} & \biggl\vert \frac{\psi(c_{1})+\psi(c_{2})}{2}-\frac{1}{c_{2}-c_{1}} \int _{c_{1}}^{c_{2}}\psi(\xi)\,d\xi \biggr\vert \\ &\quad \leq\frac{c_{2}-c_{1}}{4} \biggl[\psi^{\prime} \biggl(\frac {2c_{2}^{2}-c_{1}^{2}+5c_{1}c_{2}}{3(c_{2}-c_{1})} \biggr) +\psi^{\prime} \biggl(\frac{c_{2}^{2}-2c_{1}^{2}+c_{1} c_{2}}{3(c_{2}-c_{1})} \biggr) \biggr]. \end{aligned}$$

3 Applications to special means of real numbers

Let \(\alpha\in(0,1]\), \(r\in\mathbb{R}\), \(r\neq0, -\alpha\) and \(a, b>0\) with \(a\neq b\). Then the arithmetic mean \(\mathrm{A}(a, b)\), logarithmic mean \(\mathrm{L}(a, b)\) and \((\alpha, r)\)th generalized logarithmic mean \(\mathrm{L}_{(\alpha, r)}(a,b)\) of a and b are defined by

$$ \mathrm{A}(a,b)=\frac{a+b}{2}, \quad \quad\mathrm{L}(a,b)=\frac{a-b}{\log a-\log b}, \quad\quad \mathrm{L}_{(\alpha, r)}(a,b)= \biggl[\frac{\alpha (b^{\alpha+r}-a^{\alpha+r} )}{(\alpha+r) (b^{\alpha}-a^{\alpha} )} \biggr]^{1/r}, $$

respectively. Then from Theorems 2.3 and 2.5 together with the convexities of the functions \(\xi\rightarrow\xi^{r}\) and \(\xi\rightarrow1/\xi\) on the interval \((0, \infty)\) we get several new inequalities for the arithmetic, logarithmic and generalized logarithmic means as follows.

Theorem 3.1

Let \(c_{1},c_{2}\in\mathbb{R}\) with \(0< c_{1}< c_{2}\), \(r>1\), \(q>1\) and \(\alpha\in(0, 1]\). Then we have

$$\begin{aligned}& \bigl\vert \mathrm{A}\bigl(c_{1}^{r},c_{2}^{r} \bigr)-\mathrm{L}^{r}_{(\alpha ,r)}(c_{1},c_{2}) \bigr\vert \\& \quad \leq\frac{r(c_{2}-c_{1}) (5c_{2}^{\alpha}-7c_{1}^{\alpha }+c_{1}c_{2}^{\alpha-1}+c_{1}^{\alpha-1}c_{2} )}{ 12(c_{2}^{\alpha}-c_{1}^{\alpha})}\mathrm{A}\bigl( \vert c_{1} \vert ^{r-1}, \vert c_{2} \vert ^{r-1}\bigr), \\& \bigl\vert \mathrm{A}\bigl(c_{1}^{r},c_{2}^{r} \bigr)-\mathrm{L}^{r}_{(\alpha ,r)}(c_{1},c_{2})) \bigr\vert \\& \quad \leq \frac{r(c_{2}-c_{1})}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \bigl[ \bigl(\mathrm{A}_{1} (\alpha) \bigr)^{1-1/q} \bigl\{ \mathrm{A}_{2}(\alpha) \vert c_{1} \vert ^{(r-1)q} +\mathrm{A}_{3}(\alpha) \vert c_{2} \vert ^{(r-1)q} \bigr\} ^{1/q} \\& \quad\quad{} + \bigl(\mathrm{B}_{1}(\alpha) \bigr)^{1-1/q} \bigl\{ \mathrm{B}_{2} (\alpha) \vert c_{1} \vert ^{(r-1)q}+\mathrm{B}_{3}(\alpha ) \vert c_{2} \vert ^{(r-1)q} \bigr\} ^{1/q} \bigr], \\& \bigl\vert \mathrm{A}\bigl(c_{1}^{-1},c_{2}^{-1} \bigr)-\mathrm{L}^{-1}_{(\alpha ,-1)}(c_{1},c_{2}) \bigr\vert \leq \frac{(c_{2}-c_{1}) (5c_{2}^{\alpha}-7c_{1}^{\alpha }+c_{1}c_{2}^{\alpha-1}+c_{1}^{\alpha-1}c_{2} )}{ 12(c_{2}^{\alpha}-c_{1}^{\alpha})}\mathrm{A}\bigl(c_{1}^{-2}, c_{2}^{-2}\bigr), \\& \bigl\vert \mathrm{A}\bigl(c_{1}^{-1},c_{2}^{-1} \bigr)-\mathrm{L}^{-1}_{(\alpha, -1)}(c_{1},c_{2}) \bigr\vert \leq \frac{c_{2}-c_{1}}{2(c_{2}^{\alpha}-c_{1}^{\alpha})} \bigl[ \bigl(\mathrm {A}_{1}( \alpha) \bigr)^{1-1/q} \bigl\{ \mathrm{A}_{2}(\alpha) \vert c_{1} \vert ^{-2q}+\mathrm {A}_{3}(\alpha) \vert c_{2} \vert ^{-2q} \bigr\} ^{1/q} \\& \hphantom{\bigl\vert \mathrm{A}\bigl(c_{1}^{-1},c_{2}^{-1} \bigr)-\mathrm{L}^{-1}_{(\alpha, -1)}(c_{1},c_{2}) \bigr\vert \leq}{}+ \bigl(\mathrm{B}_{1}(\alpha) \bigr)^{1-1/q} \bigl\{ \mathrm {B}_{2}(\alpha) \vert c_{1} \vert ^{-2q} + \mathrm{B}_{3}(\alpha) \vert c_{2} \vert ^{-2q} \bigr\} ^{\frac {1}{q}} \bigr], \end{aligned}$$

where \(\mathrm{A}_{1}(\alpha)\), \(\mathrm{A}_{2}(\alpha)\), \(\mathrm{A}_{3}(\alpha)\), \(\mathrm{B}_{1}(\alpha)\), \(\mathrm{B}_{2}(\alpha)\) and \(\mathrm{B}_{3}(\alpha)\) are defined as in Theorem 2.5.

4 Applications to the trapezoidal formula

Let Δ be a division \(c_{1}=\xi_{0}<\xi_{1}<\cdots<\xi_{n-1}<\xi_{n}=c_{2}\) of the interval \([c_{1}, c_{2}]\) and consider the quadrature formula

$$ \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha}\xi= \mathrm{T}_{\alpha}(\psi, \Delta)+\mathrm{E}_{\alpha}(\psi, \Delta), $$

where

$$ \mathrm{T}_{\alpha}(\psi, \Delta)=\sum_{i=0}^{n-1} \frac{\psi(\xi_{i})+\psi(\xi_{i+1})}{ 2}\frac{ (\xi^{\alpha}_{i+1}-\xi^{\alpha}_{i} )}{\alpha} $$

is the trapezoidal version and \(\mathrm{E}_{\alpha}(\psi, \Delta)\) denotes the associated approximation error. In this section, we are going to derive several new error estimations for the trapezoidal formula.

Theorem 4.1

Let \(\alpha\in(0, 1]\), \(c_{1}, c_{2}\in\mathbb{R}\) with \(0\leq c_{1} < c_{2}\), \(\psi:[c_{1}, c_{2}]\rightarrow\mathbb{R}\) be an α-differentiable function on \((c_{1}, c_{2})\) and Δ be a division \(c_{1}=\xi_{0}<\xi_{1}<\cdots<\xi_{n-1}<\xi_{n}=c_{2}\) of the interval \([c_{1}, c_{2}]\). Then the inequality

$$ \bigl\vert \mathrm{E}_{\alpha}(\psi, \Delta) \bigr\vert \leq \frac{1}{12\alpha}\max\bigl\{ \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert , \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert \bigr\} \sum_{i=0}^{n-1}(\xi _{i+1}- \xi_{i}) \bigl(5\xi_{i+1}^{\alpha}-7 \xi_{i}^{\alpha}+\xi_{i}\xi_{i+1}^{\alpha -1}+ \xi_{i}^{\alpha-1}\xi_{i+1} \bigr) $$

holds if \(\mathrm{D}_{\alpha}(\psi)\in \mathrm{L}_{\alpha}^{1}([c_{1},c_{2}])\) and \(\vert \psi^{\prime } \vert \) is convex on \([c_{1},c_{2}]\).

Proof

Applying Theorem 2.3 on the subinterval \([\xi_{i},\xi _{i+1}]\) \((i= 0, 1,\ldots, n - 1)\) of the division Δ, we have

$$\begin{aligned} & \biggl\vert \frac{\psi(\xi_{i})+\psi(\xi_{i+1})}{2}\frac{(\xi^{\alpha }_{i+1}-\xi^{\alpha}_{i})}{ \alpha}- \int_{\xi_{i}}^{\xi_{i+1}}\psi(\xi)\,d_{\alpha}\xi \biggr\vert \\ &\quad \leq\frac{(\xi_{i+1}-\xi_{i})}{2\alpha} \biggl[\frac{( \vert \psi^{\prime}(\xi_{i}) \vert + \vert \psi^{\prime}(\xi_{i+1}) \vert ) (5\xi_{i+1}^{\alpha}-7\xi _{i}^{\alpha}+ \xi_{i}\xi_{i+1}^{\alpha-1}+\xi_{i}^{\alpha-1}\xi_{i+1} )}{12} \biggr]. \end{aligned}$$
(4.1)

It follows from (4.1) and the convexity of \(\vert \psi^{\prime}(\xi ) \vert \) on the interval \([c_{1}, c_{2}]\) that

$$\begin{aligned}& \bigl\vert \mathrm{E}_{\alpha}(\psi, \Delta) \bigr\vert = \biggl\vert \mathrm{T}_{\alpha}(\psi, \Delta)- \int_{c_{1}}^{c_{2}}\psi(\xi)\,d_{\alpha}\xi \biggr\vert \\& \quad = \Biggl\vert \sum_{i=0}^{n-1} \biggl[ \frac{\psi(\xi_{i})+\psi(\xi_{i+1})}{2} \frac{ (\xi^{\alpha}_{i+1}-\xi^{\alpha}_{i} )}{\alpha}- \int _{\xi_{i}}^{\xi_{i+1}}\psi(\xi)\,d_{\alpha}\xi \biggr] \Biggr\vert \\& \quad \leq \sum_{i=0}^{n-1} \biggl\vert \frac{\psi(\xi_{i})+\psi(\xi_{i+1})}{2} \frac{ (\xi^{\alpha}_{i+1}-\xi^{\alpha}_{i} )}{\alpha}- \int _{\xi_{i}}^{\xi_{i+1}}\psi(\xi)\,d_{\alpha}\xi \biggr\vert \\& \quad \leq \frac{1}{2\alpha}\sum_{i=0}^{n-1}( \xi_{i+1}-\xi_{i}) \biggl[\frac{( \vert \psi^{\prime}(\xi_{i}) \vert + \vert \psi^{\prime}(\xi_{i+1}) \vert ) (5\xi_{i+1}^{\alpha}-7\xi _{i}^{\alpha} +\xi_{i}\xi_{i+1}^{\alpha-1}+\xi_{i}^{\alpha-1}\xi_{i+1} )}{12} \biggr] \\& \quad = \frac{1}{12\alpha}\sum_{i=0}^{n-1}( \xi_{i+1}-\xi_{i}) \biggl[\frac{( \vert \psi^{\prime}(\xi_{i}) \vert + \vert \psi^{\prime}(\xi_{i+1}) \vert ) (5\xi_{i+1}^{\alpha}-7\xi _{i}^{\alpha} +\xi_{i}\xi_{i+1}^{\alpha-1}+\xi_{i}^{\alpha-1}\xi_{i+1} )}{2} \biggr] \\& \quad \leq \frac{1}{12\alpha}\sum_{i=0}^{n-1}( \xi_{i+1}-\xi_{i}) \bigl(5\xi _{i+1}^{\alpha}-7 \xi_{i}^{\alpha} +\xi_{i}\xi_{i+1}^{\alpha-1}+ \xi_{i}^{\alpha-1}\xi_{i+1} \bigr)\max\bigl\{ \bigl\vert \psi^{\prime}(\xi_{i}) \bigr\vert , \bigl\vert \psi^{\prime}(\xi_{i+1}) \bigr\vert \bigr\} \\& \quad \leq \frac{1}{12\alpha}\max\bigl\{ \bigl\vert \psi^{\prime}(c_{1}) \bigr\vert , \bigl\vert \psi^{\prime}(c_{2}) \bigr\vert \bigr\} \sum_{i=0}^{n-1}(\xi _{i+1}- \xi_{i}) \bigl(5\xi_{i+1}^{\alpha}-7 \xi_{i}^{\alpha}+\xi_{i}\xi_{i+1}^{\alpha -1}+ \xi_{i}^{\alpha-1}\xi_{i+1} \bigr). \end{aligned}$$

 □

Making use of arguments analogous to the proof of Theorem 4.1, we get Theorem 4.2 immediately.

Theorem 4.2

Let \(\alpha\in(0, 1]\), \(q>1\), \(c_{1}, c_{2}\in\mathbb{R}\) with \(0\leq c_{1} < c_{2}\), \(\psi:[c_{1}, c_{2}]\rightarrow\mathbb{R}\) be an α-differentiable function on \((c_{1}, c_{2})\) and Δ be a division \(c_{1}=\xi_{0}<\xi_{1}<\cdots<\xi_{n-1}<\xi_{n}=c_{2}\) of the interval \([c_{1}, c_{2}]\). Then the inequality

$$\begin{aligned} \bigl\vert \mathrm{E}_{\alpha}(\psi, \Delta) \bigr\vert &\leq\sum _{i=0}^{n-1}\frac{(\xi_{i+1}-\xi_{i})}{2\alpha} \bigl[ \bigl( \mathrm{A}_{1}(\alpha) \bigr)^{1-1/q} \bigl\{ \mathrm{A}_{2}(\alpha) \bigl\vert \psi^{\prime}( \xi_{i}) \bigr\vert ^{q}+\mathrm{A}_{3}(\alpha) \bigl\vert \psi^{\prime}(\xi _{i+1}) \bigr\vert ^{q} \bigr\} ^{1/q} \\ &\quad{} + \bigl(\mathrm{B}_{1}(\alpha) \bigr)^{1-1/q} \bigl\{ \mathrm {B}_{2}(\alpha) \bigl\vert \psi^{\prime}(\xi_{i}) \bigr\vert ^{q} +\mathrm{B}_{3}(\alpha) \bigl\vert \psi^{\prime}(\xi_{i+1}) \bigr\vert ^{q} \bigr\} ^{1/q} \bigr] \end{aligned}$$

holds if \(\mathrm{D}_{\alpha}(\psi)\in \mathrm{L}_{\alpha}^{1}([c_{1},c_{2}])\) and \(\vert \psi^{\prime } \vert ^{q}\) is convex on \([c_{1},c_{2}]\), where \(\mathrm{A}_{1}(\alpha)\), \(\mathrm{A}_{2}(\alpha)\), \(\mathrm{A}_{3}(\alpha)\), \(\mathrm{B}_{1}(\alpha)\), \(\mathrm{B}_{2}(\alpha)\) and \(\mathrm{B}_{3}(\alpha)\) are defined as in Theorem 2.5.

5 Conclusion

In this work, we find an identity and several Hermite-Hadamard type inequalities for conformable fractional integrals, present some new inequalities for the arithmetic, logarithmic and generalized logarithmic means of two positive real numbers and provide the error estimations for the trapezoidal formula.

References

  1. Hermite, C: Sur deux limites d’une intégrale définie. Mathesis 3, 82 (1883)

    Google Scholar 

  2. Hadamard, J: Étude sur les propriétés des fonctions entières et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 58, 171-215 (1893)

    MATH  Google Scholar 

  3. Niculescu, CP, Persson, L-E: Convex Functions and Their Applications. Springer, New York (2006)

    Book  MATH  Google Scholar 

  4. Wang, M-K, Li, Y-M, Chu, Y-M: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. (2017). doi:10.1007/s11139-017-9888-3

    Google Scholar 

  5. Wang, M-K, Chu, Y-M: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 37B(3), 607-622 (2017)

    Article  MathSciNet  Google Scholar 

  6. Adil Khan, M, Khurshid, Y, Ali, T: Hermite-Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comen. 86(1), 153-164 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Adil Khan, M, Khurshid, Y, Ali, T, Rehman, N: Inequalities for three times differentiable functions. Punjab Univ. J. Math. 48(2), 35-48 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Chu, Y-M, Adil Khan, M, Khan, TU, Ali, T: Generalizations of Hermite-Hadamard type inequalities for MT-convex functions. J. Nonlinear Sci. Appl. 9(6), 4305-4316 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Wu, Y, Qi, F, Niu, D-W: Integral inequalities of Hermite-Hadamard type for the product of strongly logarithmically convex and other convex functions. Maejo Int. J. Sci. Technol. 9(3), 394-402 (2015)

    Google Scholar 

  10. Noor, MA, Noor, KI, Awan, MU: Hermite-Hadamard inequalities for relative semi-convex functions and applications. Filomat 28(2), 221-230 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bai, R-F, Qi, F, Xi, B-Y: Hermite-Hadamard type inequalities for the m- and \((\alpha, m)\)-logarithmically convex functions. Filomat 27(1), 1-7 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Matłoka, M: On some Hadamard-type inequalities for \((h_{1}, h_{2})\)-preinvex functions on the co-ordinates. J. Inequal. Appl. 2013, Article ID 227 (2013)

    Article  MATH  Google Scholar 

  13. Zhang, X-M, Chu, Y-M, Zhang, X-H: The Hermite-Hadamard type inequality of GA-convexity functions. J. Inequal. Appl. 2010, Article ID 507560 (2010)

    MATH  Google Scholar 

  14. Chu, Y-M, Wang, G-D, Zhang, X-H: Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13(4), 725-731 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Bombardelli, M, Varošanec, S: Properties of h-convex functions related to the Hermite-Hadamard-Fejér inequalities. Comput. Math. Appl. 58(9), 1869-1877 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sarikaya, MZ, Saglam, A, Yildirim, H: On some Hadamard-type inequalities for h-convex functons. J. Math. Inequal. 2(3), 335-341 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kirmaci, US, Klaričić Bakula, M, Özdemir, ME, Pečarić, J: Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193(1), 26-35 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Noor, MA: On Hadamard integral inequalities involving two log-preinvex functions. JIPAM. J. Inequal. Pure Appl. Math. 8(3), Article ID 75 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Dragomir, SS, McAndrew, A: Refinments of the Hermite-Hadamard inequality for convex functions. JIPAM. J. Inequal. Pure Appl. Math. 6(5), Article ID 140 (2005)

    MATH  Google Scholar 

  20. Dragomir, SS, Fitzpatrick, S: The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 32(4), 687-696 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Dragomir, SS, Pečarić, JE, Persson, L-E: Some inequalities of Hadamard type. Soochow J. Math. 21(5), 335-341 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Dragomir, SS: Two mappings in connection to Hadamard’s inequalities. J. Math. Anal. Appl. 167(1), 49-56 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dragomir, SS, Agarwal, RP: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91-95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pearce, CEM, Pečarić, JE: Inequalities for differentiable mapping with application to special means and quadrature formulae. Appl. Math. Lett. 13(2), 51-55 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Iyiola, OS, Nwaeze, ER: Some new results on the new conformable fractional calculus with application using D’Alambert approach. Prog. Fract. Differ. Appl. 2(2), 115-122 (2016)

    Article  Google Scholar 

  26. Abdeljawad, T: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57-66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hammad, MA, Khalil, R: Conformable fractional heat differential equations. Int. J. Pure Appl. Math. 94(2), 215-221 (2014)

    MATH  Google Scholar 

  28. Hammad, MA, Khalil, R: Abel’s formula and Wronskian for conformable fractional differential equations. Int. J. Differ. Equ. Appl. 13(3), 177-183 (2014)

    MATH  Google Scholar 

  29. Khalil, R, Al Horani, M, Yousef, A, Sababheh, M: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65-70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cheng, J-F, Chu, Y-M: On the fractional difference equations of order \((2, q)\). Abstr. Appl. Anal. 2011, Article ID 497259 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Cheng, J-F, Chu, Y-M: Solution to the linear fractional differential equation using Adomian decomposition method. Math. Probl. Eng. 2011, Article ID 587068 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cheng, J-F, Chu, Y-M: Fractional difference equations with real variable. Abstr. Appl. Anal. 2012, Article ID 918529 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Anderson, DR: Taylor’s formula and integral inequalities for conformable fractional derivatives. In: Contributions in Mathematics and Engineering, in Honor of Constantin Carathéodory. Springer, Berlin (2016)

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Natural Science Foundation of China (Grants Nos. 61673169, 61374086, 11371125, 11401191) and the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11626101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Chu.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YM., Adil Khan, M., Ali, T. et al. Inequalities for α-fractional differentiable functions. J Inequal Appl 2017, 93 (2017). https://doi.org/10.1186/s13660-017-1371-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1371-6

MSC

Keywords