Title: The impact of hospital-based and community based models of cerebral palsy rehabilitation: a quasi-experimental study

Authors' information

1. Jermaine M Dambi – Corresponding author
 Research Fellow at University of Cape Town
 Lecturer
 Department of Rehabilitation
 College of Health Sciences
 University of Zimbabwe
 P O Box AV 178
 Avondale, Harare
 Email: jermainedambi@gmail.com
 Tel: +263-4-791631 Ext 2175/6, Cell: +263773444911

2. Professor Jennifer Jelsma (PhD)
 Division of Physiotherapy
 Department of Health and Rehabilitation Sciences
 Faculty of Health Sciences
 University of Cape Town
 Anzio Road
 Observatory, Cape Town
 Tel: 27-21-4066401, 27-21-4066595
Abstract

Purpose: Cerebral palsy is a life-long condition which requires appropriate on-going rehabilitation intervention which should effectively meet the needs of both children and parents/care-givers. A quasi-experimental pragmatic research design was used to compare the impact of two models of rehabilitation service delivery currently offered in Harare, Zimbabwe, one hospital-based and the other community-based.

Method: Questionnaires were distributed to 46 caregivers of children with CP at baseline and after three months. Twenty children received rehabilitation services in a community setting and 26 received services as outpatients at a central hospital. The Gross Motor Function Measurement was used to assess functional change. The burden of care was measured using the Caregiver Strain Index, satisfaction with physiotherapy was assessed using the modified Medrisk satisfaction with physiotherapy services questionnaire and compliance was measured as the proportion met of the scheduled appointments.

Results: Children receiving community based treatment children were significantly older than children in the hospital based group. Regression analysis revealed that, once age and level of severity were controlled for, children in the community based treatment group improved their motor function 6% more than children receiving hospital based services. There were no differences detected between the groups with regard to care-giver strain or quality of life and 51% of the caregivers reported signs consistent with clinical distress/depression. Most caregivers (83%) expressed that they were overwhelmed by the caregiving role and this increased with the chronicity of care. The financial burden of caregiver was predictive of caregiver strain.

Caregivers in the community based treatment group reported greater satisfaction with services and were more compliant (p<.001) as compared to recipients of hospital based services.

Conclusion: Long term caregiving leads to strain in caregivers and there is a need to design interventions to alleviate the burden. Findings suggest that the provision of care within a community setting is preferable in that it was associated with a greater improvement in functioning, greater satisfaction with services, better compliance and care-givers continued to bring in older children for therapy. It is therefore suggested that this is the preferred method of service delivery within a resource constrained context.
Keywords
Cerebral palsy, community based rehabilitation, institution based intervention, rehabilitation, Zimbabwe
Background

Cerebral palsy (CP) is the most common paediatric neurological condition[1] and the principal cause of disability in children globally.[2] It is defined as “a group of disorders of the development of movement and posture, causing activity limitation, that are attributed to non-progressive disturbances that occurred in the developing fetal or infant brain. The motor disorders of cerebral palsy are often accompanied by disturbances of sensation, cognition, communication, perception, and/or behaviour, and/or by a seizure disorder”. [3] CP is a universal problem [2] with a global incidence of 2 to 3 cases per 1000 births.[4] The exact prevalence in Zimbabwe is unknown; however, from extrapolated data, the incidence is similar and estimated at 1.55/1000 in rural areas and 3.3/1000 in urban areas.[5] Children with CP face multiple bio-psychosocial challenges.[6][7] This coupled to the fact that CP is a lifetime condition [2][3][8], may result in a considerable burden on caregivers of children with severe impairments, affecting their health and health related quality of life.[9][10] Rehabilitation treatment is an essential component [1][11] of the multi-disciplinary approach required to address the problems of children with CP and their families.[8][12] The most effective method of service delivery to optimise the child’s potential and to provide support to the caregiver has not yet been established, especially in low-income countries such as Zimbabwe. Issues such as accessibility and acceptability of services, compliance with training and effectivity of the intervention need to be considered when implementing any model of service delivery.

Different models of rehabilitation service delivery have been proposed in an attempt to provide affordable and appropriate support to people living with disabilities and these can be broadly classified as either institution–based (IB) or community based rehabilitation (CBR) /outreach-based (OR) approaches.[13][14] The roots of CBR can be traced back to the Declaration of Alma of Atta which led to the adoption of the global primary health care strategy by the WHO. The aim of CBR was to provide primary health care and rehabilitation services to people with disabilities within their communities.[15] CBR has been in existence for more than 3 decades [15][16][17][18] yet little is known about its efficacy, effectiveness, relevance, appropriateness and sustainability as a service delivery model and public health strategy.[19][20][21]

Zimbabwe utilizes a hybrid model of provision of rehabilitation services that is a blend of hospital-based and community-based approaches which are provided at district, provincial
Unfortunately, a decade of socio-economic meltdown has resulted in deterioration of the health care delivery system. At present, organization of rehabilitation services varies from institution to institution and is mainly governed by resource availability. Most institutions are now offering hospital-based services only. For instance, out of the six state central hospitals in Zimbabwe, only Harare Central Hospital (HCH) is at present running a consistent outreach program through its Children Rehabilitation Unit (CRU). The CRU is a specialized paediatric rehabilitation centre, which, for more than twenty years, has run a peri-urban, community-based outreach programme based on the WHO CBR model. Children and their care-givers (mostly mothers) gather in groups twice a month in community centres. Children receive some individual treatment from therapists and/or rehabilitation technicians (who have undergone two years of training). In addition, there are group activities and education sessions. In contrast, children in another high-density area of Harare, which is serviced by a different hospital, receive regular physiotherapy within an institutional out-patient setting. As the outreach programme relies on a certain amount of donor funding, it is somewhat more expensive to run.

There was a clear need to compare the two models of service delivery, not only to inform the on-going re-structuring of rehabilitation services in Zimbabwe, but to provide empirical evidence of the relative impact of CBR/outreach services as compared to institutionally-based rehabilitation. The objectives of the study were therefor to compare the impact of the outreach (OR) and the institutionally based (IB) programs in terms of their impact on the children’s functioning, the strain of their caregivers, compliance with scheduled appointments and the overall satisfaction with the services received. It was anticipated that there would be little difference in the functional change between the two groups. The greater group interaction and support were expected to result in a greater decrease in the strain of the care-givers attending the outreach group. The satisfaction with services was expected to be greater in the outreach group as the service was brought to them and they did not need to travel far to get support for their children.
Methods
A quasi-experimental design was used as it was a pragmatic trial and it was not possible to randomly assign children to one group or the other. A sample of convenience was drawn from the children treated under the OR program and IB CP clinics who attended the clinics during the first four weeks of the study.
The children had to have received a diagnosis of CP according to their patient notes. They were to be between 0.5-12 years of age as the Gross Motor Function Measure (GMFM) has good content and face validity for children in the age range 0.5 to 13 years [25] and the discharge age for the CRU Outreach program is 12 years. No participant was recruited if they were scheduled for surgery or if they had any other significant medical and nutritional problems or other clinical factors that might have biased the rehabilitation program.[26][27] Children who had co-morbid neurological conditions e.g. Spinal Bifida or who were receiving other forms of therapeutic interventions were similarly excluded.
The burden of care as measured by the Caregiver Strain Index (CSI) was one of the major variables under scrutiny. Assuming mean CSI scores of 7 and 9 (SD=2) for both groups[28] at the conclusion of the study period, the expected minimal number of cases per group was 16 (alpha =.05, power = 95%). Oversampling was done to counteract effects of attrition due to e.g. drop-out, sickness and non-compliance.

Instrumentation
The Gross Motor Function Measure -66 item version (GMFM-66) is a condition specific and widely used, standardized and validated ordinal scale which measures changes in motor function in children with CP.[25][29] [30] Functional prognosis is dependent on level of severity and this we measured using the Gross Motor Function Classification System (GMFCS) which is a valid and reliable tool. [25][31] This classifies severity on a 5-level ordinal scale, with children in level one being least affected and level five being more severely affected and functionally dependent.[31] The Care-giver Strain Index [32]and Medrisk Instrument for Measuring Patient Satisfaction with Physical Therapy Care (MRPS), [33] have been reported to be valid and reliable tools in measuring the burden of care and satisfaction with services respectively.[32][33] The tools were translated into the native language, Shona, using a backward-forward approach. The tools were then validated on a group of caregivers, n=20 of children with CP receiving outpatient services at CRU who were
not part of the main study. The caregivers completed the questionnaires and were requested to give comments on the appropriateness, validity and clarity of the tools. After feedback, the tools were re-administered after a week in order to assess the internal consistency (Cronbach’s alpha=.78), validity and reliability (r=.82) of the tools, all of which were found to be acceptable.

Intervention
The children and parents (mostly mothers) in the OR arm gathered in groups twice a month in community centres. In the IB arm, the frequency of appointments was variable and was dependent on the discretion of the treating therapists. In both arms, children received some individual face to face treatment from therapists. In addition, the OR arm received group activities, where caregivers were requested to demonstrate home exercise programs to other caregivers as well as sharing the challenges and achievements of caregiving. Additionally, the OR arm received educational sessions on the aetiology, management of CP and ways of coping with the associated burden of care. They were provided with light refreshment after therapy sessions and were given the option to participate in caregiver support group activities such as joint income generation projects. The OR programme receives donor funding and employs more rehabilitation professionals which improves the therapist/child ratio. In addition, allowances paid to professionals for every outreach outing makes it more expensive to run.[24]

Procedure
A pilot study was done to determine the intra-rater reliability of the GMFCS and GMFM-66 scoring as well as refining data collection procedures (see above). Caregivers were then recruited by the research team over four consecutive weeks. Caregivers were approached as they were awaiting services or after their children were treated. Once informed consent had been obtained, CSI questionnaires were distributed to caregivers which were self-administered. The principal researcher then documented the motor function scores of children with CP using the GMFM-66 and the GMFCS. It would have been difficult to transport participants to a neutral venue so all assessments were done at usual treatment settings and the usual treatment days to avoid inconveniencing the caregivers. Consequently blinding to group membership was not possible. The compliance with scheduled appointments was captured throughout the study. Three months later, the same
procedure was followed in scoring the CSI, GMFM-66 scores and additionally the modified MRPS questionnaire was applied. Both groups were provided with snacks and drinks after data collection procedures.

Ethical considerations
Ethical approval was sought from the University of Cape Town (ref 109/2012) and the Medical Research Council of Zimbabwe (MRCZ/B/333). Consent was sought from caregivers, rehabilitation professionals and verbal assent was requested from children who could communicate (n=5). No care-giver refused consent. Caregivers were assigned identity numbers to preserve confidentiality and only the principal researcher had access to the collected raw data which was kept in a safe locker. Both groups of participants were treated equally to achieve social justice.

Data analysis
Statistical analysis was performed using STATISTICA version 10. We used an alpha level of 0.05 for all statistical tests. Analysis was per protocol. As most of the data were non-parametric, the Mann-Whitney U, chi-squared and Fishers’ Exact tests were used to compare results between the two groups in terms of the difference in demographics, MRPS and CSI. The scores on the GMFM-66 were transformed into interval data using the Gross Motor Ability Estimator (GMAE-2) Scoring Software for the GMFM [34]which is a software package for scoring the Gross Motor Function Measure (GMFM) based on item response theory. A one way ANOVA was used to compute differences in GMFM-66 and CSI scores at different times.

As age was significantly different between the two groups and there were more severely affected children in the community based treatment group, regression analysis was done to establish which factors predicted the amount of change in the GMFM Score. Dummy variables were created for the categorical variable of the group and the ordinal variable of GMFCS was dichotomised into levels mild/moderate (I, II and III) and severe (IV and V).

Residual analysis was performed and children who had residual scores of more than 2.5 SD from the mean were excluded.
Results

Demographic and medical characteristics
A total of 107 potential participants were approached for recruitment into the study, of these, 42 were from OR and 65 from IB. As can be seen in Figure 1, 32 did not meet the inclusion criteria or declined participation (15). A further four in the OR group and 11 in the IB were lost to follow-up for different reasons. Ultimately 20 in the OR and 26 children in the IB groups completed the study. Demographic information on the 46 dyads of caregiver and child with CP who participated are presented in Table 1. Children receiving IB treatment children were significantly younger than those in the IB group, (12 as opposed to 44 months). However, the two groups were comparable in terms of the socio-demographics of both children and caregivers at baseline. In the IB group 38% of the children were in the most severe levels of the GMFCS, compared to 50% in the OR group, however the proportions in each level were not significantly associated with group.

<table>
<thead>
<tr>
<th>Table 1: Study population demographic characteristics, N=46</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Males</td>
</tr>
<tr>
<td>Females</td>
</tr>
<tr>
<td>Mean age of children in months (SD)</td>
</tr>
<tr>
<td>GMFCS Level</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>CP type</td>
</tr>
<tr>
<td>Spastic</td>
</tr>
<tr>
<td>Athetoid/dyskinetic</td>
</tr>
<tr>
<td>Ataxic</td>
</tr>
<tr>
<td>Mixed</td>
</tr>
<tr>
<td>Mean caregiver age (SD)* in years</td>
</tr>
</tbody>
</table>
Treatment sessions and compliance

The therapist hour’s ratio was calculated by dividing the product of number of therapists and total number hours of therapy provided by total number of children treated over the study period. As can be seen in Table 2 below, there were no statistically significant differences in terms of the organization of treatment sessions, \(\chi^2 = 0.711, \text{df}=1, p=0.399 \) and children in the community based group received a significantly higher amount of therapy time, \(t(43)=3.19, p=0.003 \).

Table 2: Treatment sessions details for the study duration

<table>
<thead>
<tr>
<th>OR</th>
<th>IB</th>
<th>Statistic</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of treatment rendered</td>
<td>Individual therapy sessions</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Health promotional talks</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Therapist hours ratio</td>
<td>Mean (SD)</td>
<td>0.29 (.07)</td>
<td>0.21 (.10)</td>
</tr>
</tbody>
</table>

- With Yates correction of continuity
group were expected to attend every two weeks and the baseline for this group was therefore six. For the hospital based group, caregivers were given a variable number of appointments; the number of appointments was taken as the denominator and the number of kept appointments as the numerator. The mean percentage compliance was significantly greater in the OR group: 93.3% (median=100, range: 67-100) for the OR group and 72.8% (median=72.5, range: 33-100) for the IB group, (Z=-3.56, p<.001).

Impact on function
The GMFM 66 scores over time (Table 3) were compared and whereas there were no between group differences detected, the improvement over time for both groups combined was significant.

Table 3: Change in GMFM 66 scores over three months, n=46

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std.Dv.</th>
<th>Diff.</th>
<th>Std.Dv.</th>
<th>t</th>
<th>df</th>
<th>p</th>
<th>Confidence -95%</th>
<th>Confidence +95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>41.5</td>
<td>11.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three months</td>
<td>44.1</td>
<td>14.5</td>
<td>2.6</td>
<td>8.6</td>
<td>2.04</td>
<td>45</td>
<td>0.047</td>
<td>-5.20</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

The regression model (Table 4) with the change in GMFM-66 scores as dependent variable accounted for about a quarter of the variance (adjusted $R^2=.27$) after residual analysis resulted in the scores of two children being removed. The results indicate that, once age and category were controlled for, children in the OR group improved 2.49 points more on the GMFM-66 than children receiving IR services. This equates to approximately a 6% difference in improvement (2.49/41.5 at baseline). Children who were less severely disabled showed 1.96 points more improvement and for each month of age, older children showed .02 less improvement.

Table 4: Predictors of the change in GMFM-66 scores over three months, n=46

<table>
<thead>
<tr>
<th></th>
<th>Amount of change - b</th>
<th>Standard error of b</th>
<th>t(41)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.39</td>
<td>0.61</td>
<td>-0.6</td>
<td>0.526</td>
</tr>
<tr>
<td>OR group</td>
<td>2.49</td>
<td>0.75</td>
<td>3.3</td>
<td>0.002</td>
</tr>
<tr>
<td>Minimal severity</td>
<td>1.96</td>
<td>0.67</td>
<td>2.9</td>
<td>0.005</td>
</tr>
<tr>
<td>Age (months)</td>
<td>-0.02</td>
<td>0.01</td>
<td>-2.3</td>
<td>0.029</td>
</tr>
</tbody>
</table>
Impact on care-givers

The majority of both groups reported an impact on inconvenience, physical strain, confining, family adjustments; personal plans and work adjustments (Table 5). The greatest number reported problems with financial strain and feeling overwhelmed.

Table 5: Responses to the Care Giver Strain Index (n=46)

| Number reporting problems | Baseline | | | At three months | | |
|---------------------------|----------|---------------------------------|----------|---------------------------------|
| | OR IB Total n (%) | OR IB Total n (%) | | | |
| | n n n (%) | n n n (%) | | | | |
| Sleep | 3 9 12 (26) | 2 9 11(24) | | | | |
| Inconvenient | 8 16 24 (52) | 10 15 25 (54) | | | | |
| Physical strain | 10 19 29 (63) | 10 18 28 (61) | | | | |
| Confining | 12 13 25 (54) | 9 13 22 (48) | | | | |
| Family adjustments | 10 16 26 (57) | 7 14 21 (46) | | | | |
| Personal plans | 11 19 30 (65) | 11 21 32 (70) | | | | |
| Emotional adjustments | 7 16 23 (50) | 7 16 23 (50) | | | | |
| Upsetting behaviour | 8 7 15 (33) | 6 5 11 (24) | | | | |
| Has changed | 6 6 12 (26) | 7 5 12 (26) | | | | |
| Work adjustments | 11 15 26 (57) | 11 13 24 (52) | | | | |
| Financial strain | 14 15 29 (63) | 17 17 34 (74) | | | | |
| Overwhelmed | 14 22 36 (78) | 16 24 40 (87) | | | | |
Further, the caregivers experienced a high burden of care (Table 6) and 50% (n=23) of the
caregivers had scores greater than or equal to seven which is the cut-off point for clinical
distress/depression.

Table 6: CSI scores comparison at baseline and at three months, (n=46)

<table>
<thead>
<tr>
<th></th>
<th>At baseline</th>
<th>At three months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>IB</td>
</tr>
<tr>
<td>Median</td>
<td>5.5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal (0-6)</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Clinical distress (7-12)</td>
<td>8</td>
<td>15</td>
</tr>
</tbody>
</table>

The sign test indicated that there were no changes in CSI score over the course of the study
(p=1.0). There were also no differences in the median scores between the two groups or in
the proportion reporting clinical distress (score greater than seven) either at baseline
(p=.385) or three months (p=.221).

Satisfaction with services

As shown in Table 7, caregivers in the OR group reported greater satisfaction with services
and statistically significant differences were found in all domains apart from the Registration
process, Comfort of the waiting area and being treated with respect.
<table>
<thead>
<tr>
<th>Satisfaction domain</th>
<th>Group</th>
<th>Strongly disagree n</th>
<th>Disagree n</th>
<th>Neutral n</th>
<th>Agree n</th>
<th>Strongly agree n</th>
<th>Z adj</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration process</td>
<td>OR</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>12</td>
<td>1.4</td>
<td>0.221</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>14</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfort of waiting Area</td>
<td>OR</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>1.1</td>
<td>0.317</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>11</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time therapist spends with child</td>
<td>OR</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>12</td>
<td>3.1</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount of explanations given by therapist</td>
<td>OR</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>15</td>
<td>2.9</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>0</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Being treated with respect</td>
<td>OR</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>13</td>
<td>1.1</td>
<td>0.327</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Having concerns listened to</td>
<td>OR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>16</td>
<td>3.6</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Having all questions answered</td>
<td>OR</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>15</td>
<td>2.9</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Being given future advice</td>
<td>OR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>15</td>
<td>3.8</td>
<td>.001</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receiving instructions on home exercise program</td>
<td>OR</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>15</td>
<td>2.3</td>
<td>0.035</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>6</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall satisfaction</td>
<td>OR</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>13</td>
<td>3</td>
<td>0.004</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>If they will return for future services</td>
<td>OR</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>2.3</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>IB</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discussion and Conclusions
The results of the study indicate that in several respects the OR programme was superior to the IB programme. The children appeared to be typical of children with CP in that the majority had spastic type CP (80%) which is the most common variant of CP as reportedly accounts for 80-83% of cases.[11][35][36][37] The spread across the different GMFCS levels was similar to a large scale study in Canada, which reported 42% of the children were severely affected (Levels IV and V) compared to 44% in this study.[31] The predominance of males in the sample is also typical of CP.[6][38][39] It would therefore appear that the children in this study were representative of most samples of children with CP.

A problem with quasi-experimental studies is that there may be confounding variables that may bias the results of the study. In this case, there were no differences found between the OR and IB groups in terms of demography or nature of their impairment. The differences that were noted, that the OR children were older and more were severe (although not statistically so), would have introduced bias into a randomised trial. However, in this pragmatic trial it was an indication of the strength of the OR intervention in that older, more severe children were still being brought in for treatment. It has been reported that older and more severely affected children might respond less to interventions,[12]. It was thus necessary to control for these factors by doing regression analysis. Children in the OR group showed greater improvement and several factors can account for this difference. Firstly, some of the rehabilitation workers in the OR group are based in a specialist unit and have developed skills in child treatment whereas the hospital-based rehabilitation professionals are generalists. Secondly, the lower child to therapist ratio in the OR group ensures ample time for treatment and demonstration of techniques to caregivers. Thirdly, continuity of care and the inherent good therapist-child relationship may have led to increase in-treatment adherence and this may have enhanced treatment efficacy.[40]

The situation in Zimbabwe is typical of a resource constrained country in that children with severe CP are not necessarily catered for within institutions or special schools. The response to therapy might be different in children who have had on-going intensive rehabilitation within specialised centres. In addition, parents who have had access to sophisticated services may not demonstrate the same degree of satisfaction with the type of service provided. The results of the study may therefore only be of relevance to low and middle income countries.
As the children in the community based group were older and higher proportions were in GMFCS Levels IV and V, their care-givers might be expected to report greater strain. This was not the case, which might indicate that the community based intervention mitigated the impact of severity and chronicity of care to a certain extent. This hypothesis however, needs to be empirically tested. It is clear that the care-givers are in need of additional support, particularly financial and emotional as there are no disability grants in Zimbabwe.

Caregivers in the community based treatment group seemed to be more satisfied with services and were more compliant as compared to recipients of hospital-based services. It is essential to evaluate patient satisfaction with services delivery as satisfaction is related to treatment compliance and outcomes.[33][41] Services in the community group were provided every fortnight and this could have enhanced satisfaction and compliance with services. Furthermore, consistent booking schedules have been demonstrated to affect the levels of compliance and satisfaction with services.[42][43][44] Additionally, provision of services within the recipients’ communities, negates the need for transportation costs and adapted transportation (which may not be available in low resourced settings). It also results in an increased amount of social support. All of which have been identified cited as enhancers to satisfaction and compliance.[45][46][47][48][49] Lack of knowledge of the child’s impairment can lead to non-compliance.[50] As caregivers in the OR group would have attended CP workshops prior to joining the outreach group, it was expected that they would have been more knowledge about CP and this might have enhanced compliance and satisfaction with the explanations given by therapists on CP and its treatment. Their knowledge base was not tested, however, and this was a weakness of the study.

The IB group had a higher patient to therapist ratio; this inherently leads to time pressure during treatment sessions. Time pressure may lead to decreased in-treatment adherence, less satisfaction with explanations and therapy given. This may have accounted for the lower compliance and satisfaction in the hospital-based group. The nature of the patient/practitioner relationship also affects the extent of compliance and satisfaction.[50] Further, the absence of continuity of care in the hospital based group, might also have accounted for lower rate of compliance and satisfaction.
Research on the effect of treatment frequency has yielded inconclusive evidence.[12][42][40] However, a study by Christiansen & Lange,[42] suggests that intermittent frequency is equally efficacious when compared to continuous dosage. Therefore, evidence from our findings suggests that a two week gap may be tolerable for caregivers and may result in equal gains in functional outcome.

Results from this study need to be interpreted with caution as children and caregivers had had interventions for varying lengths of time and changes in the outcome measures might have taken place prior to the study. Secondly, methodological weakness of the study design and the lack of randomisation and blinding of the assessor may limit the generalizability of our findings.

In conclusion, long term caregiving leads to strain in caregivers and there is a need to design tailor-made interventions to alleviate the burden on caregivers as it may ultimately affect the child’s functional prognosis and health outcomes. Findings from this study suggest that the provision of care within a community setting is preferable in that it was associated with a greater improvement in functioning, greater satisfaction with services and better compliance. In addition, care-givers continued to bring in older children for therapy, which was encouraging. It is therefore suggested that this is the preferred method of service delivery. Further research is needed however, to cost the methods of service delivery in order to determine the feasibility cost of transferring the management of children with CP from institutions to the community.
List of abbreviations used (if any)

- CBR – community based rehabilitation
- CP – cerebral palsy
- CRU – Children Rehabilitation Unit
- CSI – caregiver strain index
- GMFCS – gross motor function classification system
- GMFM- gross motor function measurement
- HCH – Harare Central Hospital
- HRQoL – health-related quality of life
- MOHCWZ – Ministry of Health and Child Welfare Zimbabwe

Competing interests
None

Authors' contributions
Both Jermaine Dambi and Jennifer Jelsma contributed to the conceptualisation of the study, the analysis and write-up of the paper. Jermaine Dambi was responsible for the data collection.

Acknowledgements
The University of Zimbabwe for the funding which allowed the study to take place. Appreciation is expressed to the caregivers and children with CP who participated in this study. We applaud your commitment and cooperation throughout the duration of this study. Save the Children Fund and Dr Greg Powell for providing support to the Outreach programme.
References

18. Community-Based Rehabilitation as we have experienced it ...voices of persons with disabilities [whqlibdoc.who.int/publications/9241590440.pdf]

37. **Health-related Quality of Life of Nigerian Children with Cerebral Palsy.**, 22:95–104.

41. **Client Satisfaction Evaluations** [www.emcdda.europa.eu/.../att_5868_EN_6_client_satisfaction_evalu...]

Figure 1: Flow chart of the study

Excluded (n=19):
- Did not meet inclusion criteria (n=12)
 - Orthopaedic diagnosis (n=3)
 - Diagnosis of CP and other neurological diagnosis (n=7)
 - Above age limit (n=2)
- Declined participation (n=7)
 - Time pressures

Assessed for eligibility (n=107)

Excluded (n=28)
- Did not meet inclusion criteria (n=20)
 - Orthopaedic diagnosis (n=9)
 - Diagnosis of CP and other neurological diagnosis (n=10)
 - Above age limit (n=1)
- Declined participation (n=8)

Initial sample size
- OR (n=42)
- IR (n=65)

Follow-up

Lost to follow-up (n=4)
- Changed location (n=1)
- Withdrew (n=1)
- Caregiver became ill (n=1)
- Death of child (n=1)
- Discontinued intervention (n=0)

Lost to follow-up (n=11)
- Changed location (n=2)
- Withdrew (n=3)
- Caregiver became ill (n=2)
- Discontinued intervention (n=4)

Analysis

Analysed (n=20)
- Excluded from analysis (n=4)

Analysed (n=26)
- Excluded from analysis (n=11)