Inability to Achieve a Therapeutic Dose of Tacrolimus in a Pediatric Stem Cell Transplant Patient due to Generic Substitution

Ashraf G. Madian*, Arun Panigrahi*, Minoli A. Perera and Navin Pinto

*These two authors are regarded as the first author

Ashraf G. Madian B. Pharm, Ph.D, Fellow, Committee of Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL, USA

Email: ashrfmadian@hotmail.com

Arun Panigrahi M.D, Fellow, Committee of Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL, USA

Email: arpani01@louisville.edu

Minoli A. Perera Pharm D, Ph.D., Assistant Professor of Medicine, The University of Chicago, Chicago, IL, USA

Email: mperera@bsd.uchicago.edu

Corresponding author:

Navin Pinto, M.D.

Assistant Professor of Medicine, University of Chicago

Comer Children’s Hospital

5841 South Maryland Avenue, MC 4060, Chicago, Illinois, USA 60637

Phone: 773-702-6808 Fax: 773-702-9881

Email: npinto1@peds.bsd.uchicago.edu
Abstract:

Background: Tacrolimus is an immunosuppressive drug that is used to lower the activity of the patient’s immune system to prevent organ rejection. Unfortunately, there is limited data regarding the therapeutic equivalency of generic tacrolimus formulations especially in children. We report the case of a pediatric patient having an inability to achieve a therapeutic trough level for tacrolimus after conversion from brand name to the generic formulation.

Case presentation: A 17-month-old male patient diagnosed with T-cell acute lymphoblastic leukemia underwent allogeneic bone marrow transplantation. The patient initially received intravenous (IV) tacrolimus for graft-versus-host disease (GVHD) prophylaxis and achieved therapeutic levels. The patient was then switched to an oral brand formulation of tacrolimus, and was able to maintain trough levels within the therapeutic range. After being discharged, the patient received the generic formulation of tacrolimus and the care team was unable to reach therapeutic levels despite multiple dose escalations. Returning to brand name tacrolimus resulted in prompt achievement of therapeutic levels.

Conclusions: The likely etiology for the inability to achieve therapeutic trough levels in this patient is the change in formulation from brand formulation to generic version. Other factors including drug-drug interaction, drug-food interaction and genetic factors were excluded. Also of note, the food and drug administration (FDA) tests the bioequivalency of generic and brand name formulations only in healthy volunteers with ages between 24-36 years old. Data of conversion of brand name tacrolimus to generic formulation in pediatric patients is generally lacking, as well as information regarding conversion of brand name medications to generic formulations in patients with serious conditions such as graft-versus-host-disease. Physicians and pharmacists must be aware of the inability to achieve targeted therapeutic concentrations of
Tacrolimus resulting from the conversion of brand name to the generic formulation until these
generic formulations are tested in clinical trials in the pediatric population.

Key words: tacrolimus, generic, children

Background

Tacrolimus is a commonly used calcineurin inhibitor used to induce immunosuppression
and prevent graft-versus-host disease as well as rejection in patients receiving both
hematopoietic and solid organ transplantation\(^1\)-\(^3\). When approved in 1994, it was marketed
under the brand name prograf\(^\circ\). The first generic version was approved by the FDA in 2009 \(^4\).

In practice there is a sentiment among physicians and patients that generic immunosuppressants
differ in efficacy from their brand versions\(^5\). The FDA uses a simplified process for the
approval of generic drugs called an abbreviated new drug application (ANDA) \(^1\). In that process
the generic drug is tested only in healthy volunteers with ages between 24-36 years old. For the
generic version of the drug to be considered bioequivalent to the brand name, the maximum
concentration on the concentration time plot for the generic drug and its 90% confidence
interval must be within 80%-125% of those for the brand name version \(^2\). Currently, the FDA
does not place immunosuppressants within a special category when evaluating the
bioequivalency between generic and brand name drugs \(^5\).

Although there are 5 generic formulations of tacrolimus currently available in the U.S.\(^8\),
there is limited data to confirm their therapeutic equivalency. In this case report we describe a
17-month-old boy with T-cell acute lymphoblastic leukemia who underwent a matched unrelated
stem cell transplant approximately two months prior. He was initially started on tacrolimus (i.v.)
at the time of transplant for GVHD prophylaxis, and after changing to oral brand formulation in
the hospital he was still in the therapeutic range. Once he was discharged, he received generic
tacrolimus from an outside pharmacy, and was found to be sub-therapeutic despite escalating
doses of medication.

Case report: presentation

A 17-month-old male patient was diagnosed with T-cell acute lymphoblastic leukemia at
10 months of life, when he was noted to have a white blood cell count of 950,000 with peripheral
leukemic blasts as well as systemic symptoms. Subsequently he received multiple courses of
chemotherapy, and then underwent a matched unrelated stem cell transplant at the age of 15
months. A combination of Busulfan, Fludarabine and Alemtuzumab were utilized for
myeloablation prior to stem cell transplantation from a matched unrelated donor. Subsequently
he was initially started on IV tacrolimus (0.033 mg/kg) for GVHD prophylaxis, and achieved
therapeutic levels (Figure 1 & Table 1). Approximately one month after transplant in
anticipation of being discharged, the patient was switched to an oral brand name formulation of
tacrolimus (prograf®), and was able to maintain trough levels in the prescribed therapeutic
window (Figure 1 & Table 1). The patient was discharged approximately one week later with
generic tacrolimus suspension dosed at 0.15 mg/kg PO twice daily which was compounded at an
outside pharmacy. Subsequently, he was unable to reach therapeutic levels despite multiple
escalations in dosage to a maximum dosage of 0.31mg/kg PO twice daily (Figure 1 & Table 1).
For examples, as shown in Table 1, although the dose of tacrolimus increased 84% between
day+44 to day+48, the tacrolimus plasma level decreased 52% Also during this time the
patient’s dose of Voriconazole was reduced from 12mg/kg (therapeutic dosage) to 4.17mg/kg PO
twice daily (expected prophylactic dosage), but this intervention failed to increase serum
tacrolimus levels.
During this period when his doses were escalated due to inadequate trough levels, multiple investigations were made, and the pharmacist compounding the medication was contacted. According to the outside pharmacy, the pharmacist compounded the medication in a similar fashion to the inpatient pharmacy and the solvents used were the same. The compounding in the inpatient and outside pharmacy followed a straightforward procedure involving mixing the contents of 6 tacrolimus capsules (5mg each) with 30mls of Syrup and 30mls of oral suspending vehicle. This is followed by storage at room temperature for up to 56 days. Trough levels were drawn at appropriate times, and the family was compliant with the medication.

Initially after transplant the patient manifested evidence of skin GVHD with mild skin erythema; topical steroids were initiated two weeks prior to discharge and were continued as an outpatient. The child’s skin GVHD showed marked improvement with topical steroids yet began to flare a few weeks later when he presented to the clinical pharmacology service for inability to reach a therapeutic level for tacrolimus. Tacrolimus is one of the primary agents used to induce immunosuppression and combat GVHD in bone marrow transplant patients, hence the patient’s resurgence of skin GVHD is likely further manifestation of sub-therapeutic tacrolimus levels.

At the time of the initial encounter for skin GVHD and subtherapeutic tacrolimus levels the patient was taking the following medications: acetaminophen (15mg/kg by oral route every 6 hours as needed for pain for 30 doses), diphenhydramine (1mg/kg by oral route every 6 hours as needed), famotidine (0.53 mg/kg by oral route twice daily), hydrocortisone 0.5% topical ointment (1 application by topical route twice daily), ondansetron (0.15 mg/kg by oral route every 8 hours as needed for nausea/vomiting), sulfamethoxazole-trimethoprim (13.3mg/kg / 2.6 mg/kg) by oral route twice daily on Monday, Tuesday, Wednesday), valacyclovir (29 mg/kg by
oral route every 8 hours), voriconazole (oral suspension 10 mg/kg by oral route twice daily), and multivitamins. Patient had an appropriate response to opiates (including codeine) and other medications per the caregivers. Patient did not have any adverse outcomes with surgery and anesthesia.

Review of systems at the initial encounter indicated the patient was irritable due to pruritis. The patient had a generalized rash that caused him to wake at night and necessitated the use of diphenhydramine for symptomatic relief. He also had loose stools yet normal number of bowel movements daily, and was tolerating his diet appropriately. He did not have fever, or a change in appetite or activity. Physical exam showed a fine erythematous rash scattered on face and extremities. Excoriations were present on the lower back and extremities as well. The clinical pharmacology service was consulted at this time to evaluate the etiology of the patient’s inability to reach therapeutic trough levels of tacrolimus.

Discussion:

In clinical practice we utilize trough level concentration as a measure of the exposure to tacrolimus. A recent study showed that trough level concentrations can be used as a reliable surrogate measure for area under the curve (AUC) for patients in normal clinical practice receiving generic tacrolimus. Potential contributing factors to the inability of achieving therapeutic trough levels in this patient included a change in formulation from brand formulation to generic version as well as drug-drug interactions.

Before concluding that the causal factor of subtherapeutic trough levels was the conversion to the generic formulation of tacrolimus we had to exclude other factors. For example, voriconazole can inhibit CYP3A4, decreasing the metabolism of tacrolimus and increasing its blood concentration. As shown in Figure 1, the patient’s dose was reduced from
10mg/kg twice a day to 4.17mg/kg twice a day (prophylactic dose) that may have resulted in increasing the metabolism of tacrolimus and decreasing its concentration in the plasma. The dose of voriconazole was increased back to 12mg/kg twice a day, yet still there was no significant change in the tacrolimus plasma concentration. Additionally, it’s unlikely that famotidine administration caused the environment in the stomach to be alkaline and the patient was given it both while in the hospital and after being discharged. Moreover, clinical literature has been inconclusive regarding the impact of antacids on immunosuppresants such as tacrolimus. Moreover, the prevention of tacrolimus absorption due to the concomitant administration of iron or other vitamins is not supported by any clinical literature. In addition to that, the patient received the same iron and vitamins while he was in the hospital. Finally, the other drugs he administered (Acetaminophen, diphenhydramine, ondansetron, sulfamethoxazole-trimethoprim and valacyclovir) were not reported to interact with tacrolimus. Furthermore, the patient was given these drugs both while he was in the hospital and after being discharged. Finally, he didn’t have any food changes that may have contributed to the changes in bioavailability between the two products when they were given orally.

Pharmacogenetic factors were unlikely to have contributed. The CYP 3A5*1 allele has been implicated in lower tacrolimus trough levels than patients with CYP3A5*3. This allelic variant, though important, is unlikely to play a critical role for our patient, as he was able to maintain therapeutic trough levels with appropriate dosage of tacrolimus.

The inability to achieve therapeutic levels of tacrolimus can be the result of the conversion from brand to generic formulation. In general, studying the effect of switching to generic tacrolimus in pediatric patients is not well explored. The only available study that evaluated switching to generic tacrolimus in children was done in renal transplant patients. In
that study, both trough and serum creatinine levels were retrospectively analyzed for four
patients (with ages range between 8-22 years old). Although trough levels were generally
comparable before and after switching from brand name to generic tacrolimus, interindividual
differences existed. Serum creatinine levels were identical pre- and post- switch in three of the
four patients. The fourth patients suffered from acute rejection immediately after switching to the
generic formulation. This was accompanied by a dramatic increase in the patient’s serum
creatinine level. Another study compared the physical and chemical properties of generic
formulations marketed in Mexico to their brand name version (prograf)15. This study showed
that these generic formulations have less solubility than prograf. These studies indicate that
generic formulations may not be bioequivalent to brand name tacrolimus.

Contradictory results exist regarding the clinical equivalency of brand name tacrolimus
formulations to their generic versions in the adult population. Despite the aforementioned
studies that showed that brand name tacrolimus and generic formulations may not be
bioequivalent, other studies have showed that their bioequivalencies are comparable. For
example, one study examined the efficacy and safety of the generic oral capsules of tacrolimus
(TacroBell®) in de novo renal transplantation16. The study recruited ninety-six renal transplant
recipients from 9 transplantation centers in South Korea. In general, the acute rejection and graft
survival rates were comparable to brand name treatment. One unresolved issue with this study is
that it was carried out in low risk populations with only short term follow up. Another recent
study evaluated seventy conversions, of brand name tacrolimus to the generic tacrolimus
(Sandoz), from four centers from patients after kidney, liver or multiorgan transplant17. This
study showed that trough levels and dosage needed are similar between brand name tacrolimus
and its generic formulation. Furthermore, a retrospective analysis of the electronic records and
clinical databases for 234 clinically stable adult transplant recipients (renal, liver, and heart) whose tacrolimus was converted from brand name to a generic formulation recently occurred. Trough levels were generally comparable between the two formulations. No deaths or acute rejections were reported but thirty-six patients required dose titration. Another open-label, multicenter pilot study in South Korea evaluated 57 patients receiving generic tacrolimus and corticosteroids after liver transplantation. This group of patients was then compared to another retrospectively matched control group consisting of living donor liver transplant recipients at another center who received brand name tacrolimus. Adverse events were generally comparable between the two patient populations and no patients died during this study. Finally, a multicenter crossover pharmacokinetic study in which patients would receive both the generic and brand name formulation for 14 days and then crossover revealed that Sandoz generic tacrolimus has a similar pharmacokinetic profile to Prograf® in kidney transplant patients. Another study in rats showed that the generic tacrolimus (TacroBell®) has similar hepatotoxicity, nephrotoxicity and diabetogenic effect as the brand name (Prograf®).

For our patient based on the above findings, we felt that the conversion from brand name to generic formulation of tacrolimus most likely was the causative factor for subtherapeutic tacrolimus trough levels and an exacerbation of his skin GVHD. We recommended that the patient return to brand name formulation, after which the patient had therapeutic tacrolimus levels as well as resolution of his GVHD flare.

There are a number of reasons why the current bioequivalence studies may be inadequate for the approval of generic immunosuppressants. First, studies in healthy subjects may not be extrapolated to transplant recipients. Second, steady state conditions may not be represented by single dose studies. Third, the allowance of the confidence interval to be (80%-125%) may be
too variable for drugs with a narrow therapeutic index such as immunosuppressants. Finally, children are excluded from these bioequivalence studies. For this reason the American Society of Transplantation strongly supported studies to demonstrate bioequivalence in potentially at risk patients, especially children.

Conclusions

The fact that previous studies regarding the bioequivalency of generic and brand name tacrolimus were almost exclusively done in adult humans or animals highlights the importance of testing them in pediatric patients as well as those who have undergone stem cell transplantation. As we have seen, results from adult case studies cannot be extrapolated for children. Until the use of the various generic formulations of tacrolimus can be evaluated in a large randomized clinical trial in children, physician and pharmacists must be aware of possible adverse events following a conversion from brand name to the generic form of tacolimus.

Consent:

Written informed consent was obtained from the patient’s guardian for publication of this case report.

Competing interests

The authors declare that they have no competing interests.

Authors’ contribution

AGM and AP were directly involved in the patient’s follow up, data acquisition and interpretation. AGM drafted the manuscript. AP assisted in editing the manuscript. MAP and NP who headed the clinical pharmacology consult made significant contribution to the conception, design and revision of the study. All of the authors read and approved the final manuscript.
Authors’ information

Ashraf G. Madian B. Pharm, Ph.D, Fellow, Committee of Clinical Pharmacology and Pharmacogenomics, The University of Chicago, Chicago, IL, USA

Arun Panigrahi M.D, Fellow, Committee of Clinical Pharmacology and Pharmacogenomics, The University of Chicago, The University of Chicago, Chicago, IL, USA

Minoli A. Perera Pharm D, Ph.D., Assistant Professor of Medicine, The University of Chicago, Chicago, IL, USA

Navin Pinto, M.D. Assistant Professor of Medicine, University of Chicago, Comer Children’s Hospital, Chicago, IL, USA

Acknowledgment

Support for AGM is from The University of Chicago Cancer Research Foundation Women’s Board.
References:

Figure Legend:

Figure (1, A) Serum levels of tacrolimus when patient administered brand or generic version. Day 0 was when patient received matched unrelated bone marrow transplant. Red lines represent the tacrolimus doses (mg/kg) given to the patient. X represents the patient’s serum tacrolimus levels (ng/ml). Blue half circles represent the upper limit of tacrolimus therapeutic trough level. Green half circles represent the lower limit of tacrolimus therapeutic trough level. (GVHD): graft-versus-host disease. Figure (1, B) Tacrolimus dose per day (mg/kg) for the same time interval. Figure (1, C) Voriconazole dose per day (mg/kg) for the same time interval.
Table (1) % Change in tacrolimus dose the patient administered and the corresponding change in serum levels.

<table>
<thead>
<tr>
<th>Brand name or Generic</th>
<th>Oral or I.V.</th>
<th>Date</th>
<th>% Change in the tacrolimus dose</th>
<th>% Change in the tacrolimus level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand name</td>
<td>I.V.</td>
<td>Day+8 to day+18</td>
<td>+110%</td>
<td>+150%</td>
</tr>
<tr>
<td>Brand name</td>
<td>I.V.</td>
<td>Day+18 to day+28</td>
<td>-20%</td>
<td>-2.8%</td>
</tr>
<tr>
<td>Brand name</td>
<td>Oral</td>
<td>Day +30 to day+41</td>
<td>+102.5%</td>
<td>+97%</td>
</tr>
<tr>
<td>Generic</td>
<td>Oral</td>
<td>Day+44 to day+48</td>
<td>+84%</td>
<td>-52%</td>
</tr>
<tr>
<td>Generic</td>
<td>Oral</td>
<td>Day+48 to day + 58</td>
<td>+54%</td>
<td>-28%</td>
</tr>
<tr>
<td>Brand</td>
<td>Oral</td>
<td>Day+61 to day+65</td>
<td>-51.3%</td>
<td>-46.7%</td>
</tr>
<tr>
<td>Brand</td>
<td>Oral</td>
<td>Day+65 to day+79</td>
<td>+33.5%</td>
<td>+6.5%</td>
</tr>
<tr>
<td>Brand</td>
<td>Oral</td>
<td>Day+79 to day+154</td>
<td>-58.5%</td>
<td>-20%</td>
</tr>
<tr>
<td>Brand</td>
<td>Oral</td>
<td>Day+154 to day+204</td>
<td>+146%</td>
<td>+71%</td>
</tr>
</tbody>
</table>