Optimal sevoflurane concentration for intubation with rocuronium in infants: a randomized controlled trial

Hiroshi Hanamoto1*, Aiji Boku1, Yoshinari Morimoto1,2, Mitsutaka Sugimura1, Chiho Kudo1, Hitoshi Niwa1

1Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Japan
2Special Patient Oral Care Unit, Kyushu University Hospital, Fukuoka, Japan.

* Corresponding author

Email address
HH: hanamoto@dent.osaka-u.ac.jp
AB: bokuaiji@dent.osaka-u.ac.jp
YM: ysn-mori@dent.kyushu-u.ac.jp
MS: smit@dent.osaka-u.ac.jp
CK: ckudo@dent.osaka-u.ac.jp
HN: niwa@dent.osaka-u.ac.jp
Abstract

Background

In infants, sevoflurane is commonly used for induction of anesthesia, following which a muscle relaxant is administered to facilitate tracheal intubation. When rocuronium is used as the muscle relaxant, intubation may be performed before reaching an adequate depth of anesthesia because of its rapid onset. The purpose of this study was to investigate the optimal sevoflurane concentration that would minimize the impact of intubation on hemodynamics and autonomic nervous activity in infants.

Methods

Sixty-one infants aged 1-6 months, undergoing cleft lip repair, were enrolled. Patients were randomly assigned to three end-tidal sevoflurane concentration (E_{Sevo}) groups, 3%, 4% and 5%. Anesthesia was induced with 5% sevoflurane with 100% oxygen and rocuronium (0.6 mg/kg) was administered. The concentration of sevoflurane was adjusted to the predetermined concentration in each group. Mechanical pressure control ventilation via a face mask was commenced. Five minutes after E_{Sevo} became stable at the predetermined concentration, tracheal intubation was performed. Immediately after tracheal intubation, ventilation was restarted at the same ventilator settings and continued for 150 seconds. Heart rate (HR) and mean arterial pressure (MAP) were measured. Normalized units (nu) of high frequency (HF: 0.04-0.15 Hz) and the ratio of low frequency (LF: 0.15-0.4 Hz) to HF components (LF/HF) of
HR variability were calculated by MemCalc/Tonam2CTM. Normalized unit of HF (HFnu) and LF/HF reflect cardiac parasympathetic and sympathetic activity, respectively.

Results

After intubation, HR increased slightly in all groups and MAP increased by 9.2% in the E´Sevo-3% group. LF/HF increased (p<0.01) and HFnu decreased (p<0.01) in all groups 30 seconds after intubation. HFnu was lower (p<0.001) and LF/HF was higher (p=0.007) in the E´Sevo-3% group than in E´Sevo-5% group. Autonomic responses to intubation were reduced in a dose-dependent manner.

Conclusions

Sympathomimetic and parasympatholytic responses to intubation in the E´Sevo-3% group were much greater than those in the E´Sevo-5% group. Although rocuronium can provide excellent intubating conditions, 4% to 5% E´Sevo is required to stabilize hemodynamics and autonomic nervous activity during tracheal intubation in infants.

Trial registration: The study was registered at UMIN-CTR (UMIN000009933).

Key words: Intubation, Heart rate variability, Sevoflurane, General anesthesia, Infants, Autonomic nervous activity
Background

In infants, sevoflurane is commonly used for inhalational induction of anesthesia and tracheal intubation without muscle relaxants is well accepted [1]. However, muscle relaxants are widely used to facilitate tracheal intubation even in infants, because of the potential risk for movement of the vocal cords, coughing and laryngospasm [2, 3]. Moreover, avoidance of muscle relaxants may increase the risk of difficult tracheal intubation [4]. In addition, there is no reason to withhold use of muscle relaxants, such as rocuronium, even for short duration surgeries, due to the ease of sugammadex-induced reversal of relaxant activity even with short procedures [5, 6]. On the other hand, muscle relaxants can allow tracheal intubation even under light depths of sevoflurane anesthesia [7]. In particular, the onset time of rocuronium is so rapid that an adequate depth of anesthesia for intubation may not yet have been achieved.

Although several studies have assessed sevoflurane concentration during tracheal intubation without muscle relaxants in children, the optimal sevoflurane concentration for intubation using muscle relaxants in infants is unknown. We hypothesized that laryngoscopy or intubation under a light depth of sevoflurane anesthesia might affect the autonomic nervous system, despite excellent intubation conditions. Spectral analysis of heart rate variability (HRV) is a useful method to evaluate this, because it permits non-invasive assessment of autonomic nervous activity [8, 9]. The purpose of this study was to investigate the optimal sevoflurane concentration that would minimize changes in heart rate, heart rate variability and
non-invasive blood pressure during tracheal intubation in infants.

Methods

Study design

The study protocol was approved in November 2010 by the Institutional Review Board and Ethics Committee of Osaka University Dental Hospital (ref: H22-E22-1), and was registered with UMIN-CTR (UMIN000009933). Written informed consent was obtained from the parents or guardians of all the subjects. We studied 68 cleft lip patients aged between 1 and 6 months old, with an American Society of Anesthesiologists physical status of 1 or 2, who were undergoing general anesthesia for elective cheiloplasty from January 2011 to October 2013. A history of epilepsy or significant cardiopulmonary, renal or hepatic dysfunction, symptoms of an upper respiratory tract infection, or predictive signs of difficult intubation were considered criteria for exclusion from the study.

Study protocol

Patients were randomly allocated in a single-blinded fashion (patients and parents were blinded) to three groups of end-tidal sevoflurane concentrations (E\text{Sevo}) of 3%, 4%, and 5%, using computer-generated randomized numbers without any restriction before the induction of anesthesia. All patients were made to fast for 5 hours before the induction of anesthesia and
did not receive premedication. After arrival at the operating room, heart rate (HR),
electrocardiogram, pulse oximetry (SpO₂) and noninvasive mean arterial blood pressure
(MAP) were monitored (IntelliVue MP50, Philips, Amsterdam, the Netherlands).

Inhalation anesthesia was induced by a senior anesthetist via a face mask, with 5%
sevoflurane with 100% oxygen at a fresh gas flow of 6 l/min using a semi-closed system, with
monitoring of end-tidal carbon dioxide (E´\(\text{CO}_2\)) and E´\(\text{Sevo}\). After venous access was obtained,
0.6 mg/kg rocuronium (Eslax, MSD, Tokyo, Japan) was administered. After cessation of
spontaneous respiration, the concentration of sevoflurane was adjusted to the predetermined
concentration in each group. Mechanical pressure control ventilation via a face mask was
commenced. In our preliminary study, we determined the ventilator settings required to
achieve an E´\(\text{CO}_2\) partial pressure of 35-40 mmHg after intubation as: peak pressure, 13 cm
H₂O; respiratory rate, 18 breaths/min; and inspiratory/expiratory ratio, 1:2.5 (Fabius Tiro,
Dräger, Lübeck, Germany). After reaching the predetermined value, the E´\(\text{Sevo}\) was kept
constant, and the ratio of predetermined end-tidal to inspiratory sevoflurane concentration was
maintained at 0.90-1.00 for 5 minutes. Five minutes after E´\(\text{Sevo}\) became stable at the
predetermined concentration, we recorded control data. The trachea was intubated with a 3.5
mm ID RAE™ pediatric orotracheal tube (Mallinckrodt, Dublin, Ireland) by a trained
anesthetist (H.H.). Tracheal intubation was performed using a laryngoscope (HEINE
Classic+™ Macintosh Fiber Optic Blade, size 1; HEINE, Herrsching, Germany) and the tip of
the blade was placed in the epiglottic vallecula. Immediately after tracheal intubation,
mechanical pressure control ventilation was restarted at the same ventilator settings.

If a leak occurred at an inflation pressure less than 8 cm H$_2$O and tidal volume was less
than 3 ml/kg, the tracheal tube was exchanged for one that was 0.5 mm larger, and the infant
was excluded from analysis. If tracheal intubation was difficult and repeated laryngoscopy
was needed, data collection was discontinued.

Data collection methods

The fast peaks of the R-R interval (RRI) were continuously monitored. Data were transferred
to a computer loaded with heart rate variability analysis software (MemCalc/Tonam2C$^{\text{TM}}$, GMS, Tokyo, Japan). RRI data were obtained at 1-ms sampling intervals and analyzed by the maximum entropy method at high resolution with the “MemCalc” computer program. “MemCalc” executes a linearized version of the nonlinear least squares method for fitting analysis in the domain, combined with the maximum entropy method or spectral analysis method in the frequency domain [10]. It provides reliable analysis of HRV over a minimum interval of 30 seconds and recognizes the abnormal RRI of premature beats or artifacts, including noise, and removes it automatically. The power of the RRI (ms2) with LF (0.04-0.15 Hz) and HF (0.15-0.4 Hz) bands was calculated. Total power (TP, 0.04-0.5 Hz) was obtained by addition of LF and HF. To confirm normal distribution, HF (proportional power) was
calculated as a percentage of TP (normalized unit of HF (HFnu) = HF / TP × 100), and the LF/HF ratio was also assessed.

Study variables

In this study, the outcome variables measured were HR, MAP, HFnu and LF/HF. These outcome variables, except for MAP, were measured at six time points: T0, before intubation (5 minutes after stable state); T1, 30 seconds; T2, 60 seconds; T3, 90 seconds; T4, 120 seconds; and T5, 150 seconds after tracheal intubation (at resumption of ventilation). MAP was measured at four time points: T0, T1, T3 and T5. The other variables studied were demographic and perioperative variables. Demographic variables included age and body weight, while perioperative measurements included intubation time, tidal volume, $E^\prime CO_2$ and $E^\prime Sevo$. Intubation time was defined as the time from the start of laryngoscopy to the resumption of ventilation.

Statistical analysis

Estimated sample size was calculated based on the results of a pilot study (n=15), where average LF/HF was 2.8 with a standard deviation (SD) of 4.5. A difference of 2.0 in the LF/HF between the $E^\prime Sevo$-3% and $E^\prime Sevo$-5% groups, 30 seconds after tracheal intubation, was considered clinically relevant. With a type-2 error of 20% at a two-sided 5% significance level,
we estimated that 54 patients had to be included in this study. Finally, 68 patients were required in total when considering a dropout rate of 20%.

Statistical analysis was performed with the SPSS Statics version 22.0 software package (IBM, Armonk, NY). Age, body weight and respiratory parameters were expressed as mean ± SD and compared by one-way analysis of variance (ANOVA). Sex was expressed as number of patients and analyzed statistically by the Chi-square test. HR, MAP, HFnu and LF/HF were expressed as mean ± standard errors, and compared over time by one-way ANOVA for repeated measures, followed by the Tukey test to adjust for multiple comparisons where appropriate. Statistical comparisons between groups were assessed using one-way ANOVA followed by the Tukey test to adjust for multiple comparisons where appropriate. A p-value <0.05 was considered significant.

Results

The flow diagram of the conduct of the study is shown in Figure 1. Of the 75 patients who were initially assessed, 68 patients were randomly allocated to the three groups, and 61 patients successfully completed the study without any complications. There were no significant differences in demographic data and respiratory parameters among the three groups (Table 1). The E´Sevo of the three groups was 2.91 ± 0.11 % (E´Sevo-3% group), 3.88 ± 0.17 % (E´Sevo-4% group) and 4.82 ± 0.24 % (E´Sevo-5% group).
Changes in each parameter before and after tracheal intubation are indicated in Figs. 2, 3, 4 and 5. HR increased in all groups at T1 and T2. HR increased maximally at T1 by 2.9% (p<0.001) in the E´Sevo-3% group, by 1.9% (p<0.001) in the E´Sevo-4% group and by 1.7% (p<0.001) in the E´Sevo-5% group. There were no significant differences in HR among groups at each time point (Fig. 2). MAP increased by 9.2% (p<0.001) at T1 and by 4.8% (p=0.04) at T3 in the E´Sevo-3% group. MAP decreased by 5.3% (p=0.006) at T3 and by 4.9% (p=0.011) at T5 in the E´Sevo-5% group. MAP was higher in the E´Sevo-3% group than in the E´Sevo-5% group at T1 (p=0.034) and T3 (p=0.025) (Fig. 3). LF/HF increased and HFnu decreased significantly at T1 in all groups. HFnu was lower in the E´Sevo-3% group than in the E´Sevo-4% group (p=0.011) and in the E´Sevo-5% group (p<0.001) at T1. LF/HF was higher (p=0.007) in the E´Sevo-3% group than in the E´Sevo-5% group at T1. Autonomic responses to intubation were reduced in a dose-dependent manner (Figs. 4 and 5).

Discussion

The major findings of this study were that (1) hemodynamic changes due to intubation were within 10% of pre-intubation values, (2) sympathetic activation was observed just after intubation, and (3) these responses were smaller in the E´Sevo-5% group than in the E´Sevo-3% group.

In general, autonomic nervous activity cannot be measured directly and continuously in
humans. Assessment of heart rate variability noninvasively provides information about several useful indices that are associated with autonomic nervous activity. HF (HFnu) is associated with cardiac parasympathetic activity [7]. The LF/HF ratio is considered to represent sympathovagal balance or the effect of modulation of sympathetic activity [8]. During general anesthesia, although analysis of the absolute value of HF may not be appropriate for interpreting changes in the autonomic nervous system because of overall depression of TP, the relative value (HFnu) may still be useful for the interpretation of autonomic nervous activity when an overall decrease in all components occurs [11]. Therefore, we used the relative value in our study.

It is important to consider the respiratory conditions that have an impact on HRV [12]. As long as respiratory rate remains unchanged, changes in end-tidal CO$_2$ or tidal volume have little impact on HRV in anesthetized patients [13]. However, because apnea is inevitable during laryngoscopy and tracheal intubation, it is meaningless to compare the results of HRV obtained during these manipulations with those during mechanical ventilation [14]. Therefore, in this study, in order to avoid the influence of apnea, HRV data from the start of laryngoscopy until 30 seconds after the restart of ventilation were excluded, since HRV data are calculated from the RRIs for 30 seconds in the MemCalc$^\text{TM}$ system.

In the present study, we investigated the optimal depth of sevoflurane anesthesia for intubation in infants. This study is the first report in which the autonomic nervous responses
to intubation were evaluated by HRV as well as hemodynamics. Although minimum alveolar concentration (MAC) [15] is usually determined by the up-and-down method, we could not use this method because the cutoff value of autonomic activity is unclear. Therefore, we compared the hemodynamic and autonomic changes induced by intubation at different sevoflurane concentrations. The concentration of sevoflurane was determined with reference to the value of MAC for tracheal intubation (MAC-TI) or blocking adrenergic responses (MAC-BAR) in infants.

The MAC in pediatric patients changes with age [16-19]. The MAC of sevoflurane is highest in younger patients: 3.3% for neonates, 3.2% for infants 1 to 6 months old and 2.5% for children older than 6 months [16, 17]. MAC-TI is assessed based on the intubation conditions, such as coughing, movements of the vocal cords or limbs, and whether tracheal intubation is smooth or not [16, 18, 20-22]. According to previous studies, the MAC-TI of sevoflurane at different ages was 2.69% (age, 1-9 years), 3.10% (age, 2-8 years) and 2.49% (age, 2-6 years). However, there was no available data for infants less than 1 year of age. The ratio of MAC-TI/MAC is reported to be 1.33 in children (age, 1-9 years) [18]. If this ratio is applied to our patients (aged 1-6 months), the MAC-TI is calculated as 4.26%. Clinically, when intubating with sevoflurane alone, a higher concentration than MAC-TI is required to accomplish successful intubation. Hence, anesthetists need to refer to the 95% effective dose of MAC-TI (MAC-TI\textsubscript{ED95}) rather than MAC-TI. Although the MAC-TI\textsubscript{ED95} in children (age,
1-7 years) was reported as 3.54%, [16] its value in infants is unknown. In the present study, considering MAC-TI and MAC-BAR, the autonomic and hemodynamic responses to intubation were explored at 3%, 4%, and 5% sevoflurane anesthesia.

In the clinical setting, muscle relaxants are commonly used to facilitate tracheal intubation, even in pediatric patients [1]. With the use of muscle relaxants, tracheal intubation can be performed even under light or moderate anesthesia [7, 23]. However, when using muscle relaxants, it is difficult to evaluate the optimal depth of anesthesia for intubation because muscle relaxants can improve intubation conditions regardless of the depth of anesthesia. Therefore, other measurements are required to determine the optimal depth of anesthesia.

The MAC-BAR is a clinically important index that is assessed by the increase in HR or blood pressure. The cut-off value for determination of MAC-BAR is usually an increase in HR or MBP by 10% [20] to 15% [25-27]. In the present study, the changes in HR and MAP were within 10% after intubation, which is considered to be acceptable. On the other hand, autonomic responses are extremely sensitive to noxious stimulation even if hemodynamic changes are small. Sympathetic activation due to intubation was observed in all groups and was larger in the $E'_\text{Sevo}-3\%$ than in the $E'_\text{Sevo}-5\%$ group. Although MAP remained unchanged in the $E'_\text{Sevo}-4\%$ group, 5% sevoflurane reduced it. These results suggest that 5% sevoflurane might be too high for intubation. Therefore, 4% sevoflurane, which would minimize the
changes in autonomic activities without producing side effects such as hemodynamic
depression, might be adequate for intubation. In our study, although we kept the sevoflurane
concentration constant until 150 seconds after tracheal intubation to conduct the analyses,
inhalation of 5% sevoflurane until tracheal intubation, with a decrease in the sevoflurane dose
to a level required for maintenance of anesthesia immediately after tracheal intubation, might
also be acceptable in daily clinical practice.

Measurement of plasma catecholamine concentration is one of the most common
methods for assessing autonomic nervous activity. Although the catecholamine response to
tracheal intubation is similar to heart rate and blood pressure responses in children, the
magnitude of the changes seems to be different [28]. Evaluation of the autonomic response to
intubation by catecholamine measurements is difficult, because it is not sensitive enough and
it requires repeated blood sampling in a short time interval. Therefore, we used HRV to assess
the autonomic response in this study, because HRV data is available non-invasively every 30
seconds by using the MemCalc system.

In our study, only sevoflurane was used as the anesthetic agent during induction of
anesthesia and tracheal intubation. This method makes it possible to investigate the effect of
sevoflurane itself. However, sevoflurane with fentanyl [21], remifentanil or propofol [29] can
also be used for tracheal intubation in children. Further study on the effects of these adjuvant
drugs combined with sevoflurane on heart rate variability is needed.
There are some limitations to the present study. First, the conventional method of determining MAC-TI requires a constant end-tidal concentration of volatile anesthetics to be maintained for at least 15 minutes, to establish equilibration between cerebral, arterial blood and alveolar gas tensions before tracheal intubation [18]. However, since administration of inhalational anesthetics for 15 minutes, in order to achieve the steady state, is not followed in routine clinical practice, we did not wait for 15 minutes before obtaining measurements in our patients, as it would mean an excessive exposure to anesthetics purely for research purposes, which we believe is unethical. Although Inomata et al. studied MAC-TI without achievement of the steady state (rapid method) [22], we considered 5 minutes adequate for achieving the steady state, in accordance with their other recent study on MAC-TI [21]. Second, in this study, pre-intubation E'_{CO2} was smaller than post-intubation E'_{CO2}. Although the ventilator settings were not always equal before and after intubation, the difference in E'_{CO2} was considered to be acceptable because of the changes in dead space before and after tracheal intubation. Similar E'_{CO2} data were shown in a previous study [30]. Third, the optimal anesthetic depth during tracheal intubation is still an issue. Tracheal intubation should be performed principally for the benefit of the patient rather than the satisfaction of the anesthesiologist [6]. The target anesthetic depth is different for each anesthesiologist and the ideal target, whether prevention of the autonomic nervous response, hemodynamic response, body movement or patients’ memory, is still controversial. Further studies and discussion
about optimal anesthetic depth during tracheal intubation are still needed.

In conclusion, sympathomimetic and parasympatholytic responses to intubation in the E´Sevo-3% group were much greater than those in the E´Sevo-5% group. Although rocuronium can provide excellent intubating conditions, 4% to 5% E´Sevo is required to stabilize hemodynamics and autonomic nervous activity during tracheal intubation in infants.

Abbreviations

E´Sevo: end-tidal sevoflurane concentration; HR: heart rate; MAP: mean arterial pressure; nu: normalized units; HF: high frequency; LF: low frequency; LF/HF: low frequency to high frequency components; HFnu: normalized unit of HF; HRV: heart rate variability; SpO2: pulse oximetry; E´CO2: end-tidal carbon dioxide; RRI: R-R interval; TP: Total power; SD: standard deviation; ANOVA: analysis of variance; MAC: minimum alveolar concentration; MAC-TI: minimum alveolar concentration for tracheal intubation; MAC-BAR: minimum alveolar concentration for blocking adrenergic responses.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions
HH designed the study, got informed consent, carried out the study, reviewed the analysis of
the data and drafted the manuscript. AB carried out the study. YM and MS got informed
consent and analyzed the data. CK implemented the randomization and performed the
statistical analysis. HN helped to design the study and draft the manuscript. All authors read
and approved the final manuscript.

Acknowledgements

This study was funded solely by departmental funds.

References

1. Politis GD, Tobin JR, Morell RC, James RL, Cantwell MF: Tracheal intubation of
healthy pediatric patients without muscle relaxant: a survey of technique utilization

2. Devys JM, Mourissoux G, Donnette FX, Plat R, Schauvliège F, Le Bigot P, Dureau P,
Plaud B: Intubating conditions and adverse events during sevoflurane induction in

factors of perioperative respiratory adverse events in children undergoing elective

9. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology: Heart rate variability: standards of measurement,

23. Meakin GH: Role of muscle relaxants in pediatric anesthesia. *Curr Opin Anaesthesiol*

Figures

8 Figure 1 CONSORT flow diagram.

CONSORT flow diagram.

Figure 2 Time course of heart rate

Time course of heart rate (HR) before and after intubation in E'_{Sevo}-3% (circle points and solid line), E'_{Sevo}-4% (square points and broken line) and E'_{Sevo}-5% (triangle points and dotted line) groups. Data are presented as mean (standard error).

T0, before intubation; T1, 30 seconds; T2, 60 seconds; T3, 90 seconds; T4, 120 seconds; and T5, 150 seconds after tracheal intubation.

*, $p<0.05$ vs. T0; **, $p<0.01$ vs. T0; †, $p<0.05$ E'_{Sevo}-3% vs. E'_{Sevo}-5%

Figure 3 Time course of mean arterial pressure
Time course of mean arterial pressure (MAP) before and after intubation in E´Sevo-3% (circle points and solid line), E´Sevo-4% (square points and broken line) and E´Sevo-5% (triangle points and dotted line) groups. Data are presented as mean (standard error).

T0, before intubation; T1, 30 seconds; T2, 60 seconds; T3, 90 seconds; T4, 120 seconds; and T5, 150 seconds after tracheal intubation.

**, p<0.01 vs. T0; †, p<0.05 E´Sevo-3% vs. E´Sevo-4%; ††, p<0.01 E´Sevo-3% vs. E´Sevo-5%

Figure 4 Time course of normalized units of HF

Time course of normalized units of HF (HFnu) before and after intubation in E´Sevo-3% (circle points and solid line), E´Sevo-4% (square points and broken line) and E´Sevo-5% (triangle points and dotted line) groups. Data are presented as mean (standard error).

T0, before intubation; T1, 30 seconds; T2, 60 seconds; T3, 90 seconds; T4, 120 seconds; and T5, 150 seconds after tracheal intubation.

**, p<0.01 vs. T0; †, p<0.05 E´Sevo-3% vs. E´Sevo-4%; ††, p<0.01 E´Sevo-3% vs. E´Sevo-5%

Figure 5 Time course of low frequency to high frequency components

Time course of low frequency to high frequency components (LF/HF) before and after intubation in E´Sevo-3% (circle points and solid line), E´Sevo-4% (square points and broken
line) and E_{Sevo}-5% (triangle points and dotted line) groups. Data are presented as mean (standard error).

T0, before intubation; T1, 30 seconds; T2, 60 seconds; T3, 90 seconds; T4, 120 seconds; and T5, 150 seconds after tracheal intubation.

**, $p<0.01$ vs. T0; ††, $p<0.01$ E_{Sevo}-3% vs. E_{Sevo}-5%

Table

Table 1 Demographic data and respiratory parameters

Demographic data and respiratory parameters in each group. Data are expressed as means ± SD or numbers of patients.

<table>
<thead>
<tr>
<th>Variables</th>
<th>E_{Sevo}-3% (n=21)</th>
<th>E_{Sevo}-4% (n=20)</th>
<th>E_{Sevo}-5% (n=20)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (days)</td>
<td>95.2 ± 19.2</td>
<td>90.0 ± 13.4</td>
<td>96.7 ± 14.9</td>
<td>0.382</td>
</tr>
<tr>
<td>Sex (male/female)</td>
<td>14/7</td>
<td>10/10</td>
<td>12/8</td>
<td>0.552</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>5.9 ± 0.9</td>
<td>5.8 ± 0.9</td>
<td>6.2 ± 0.7</td>
<td>0.303</td>
</tr>
<tr>
<td>Intubation time (sec)</td>
<td>29.8 ± 10.4</td>
<td>30.9 ± 9.5</td>
<td>28.0 ± 7.4</td>
<td>0.598</td>
</tr>
<tr>
<td>Tidal volume (ml)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before intubation (T0)</td>
<td>79.1 ± 16.9</td>
<td>79.1 ± 21.1</td>
<td>80.4 ± 19.4</td>
<td>0.971</td>
</tr>
<tr>
<td>After intubation (T1)</td>
<td>53.1 ± 15.5</td>
<td>46.9 ± 17.2</td>
<td>51.5 ± 16.1</td>
<td>0.456</td>
</tr>
</tbody>
</table>
\(E^\prime_{\text{CO}_2} \) (mmHg)

<table>
<thead>
<tr>
<th></th>
<th>Before intubation (T0)</th>
<th>After intubation (T1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E'_{\text{CO}_2})</td>
<td>27.5 ± 4.4</td>
<td>26.4 ± 3.1</td>
</tr>
<tr>
<td></td>
<td>28.8 ± 3.9</td>
<td>35.9 ± 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.1 ± 6.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.3 ± 4.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.624</td>
</tr>
</tbody>
</table>

1 \(E'_{\text{CO}_2} \): end-tidal carbon dioxide
Enrollment

- Assessed for eligibility \(n=75 \)
 - Excluded \(n=7 \)
 - Did not meet inclusion criteria \(n=5 \)
 - Declined to participate \(n=2 \)
 - Other reasons \(n=0 \)

Allocation

- Randomized \(n=68 \)
 - Allocated to \(E'_{\text{sevo}-3\%} \) group \(n=23 \)
 - Received allocated intervention \(n=23 \)
 - Did not receive allocated intervention \(n=0 \)
 - Allocated to \(E'_{\text{sevo}-4\%} \) group \(n=22 \)
 - Received allocated intervention \(n=22 \)
 - Did not receive allocated intervention \(n=0 \)
 - Allocated to \(E'_{\text{sevo}-5\%} \) group \(n=23 \)
 - Received allocated intervention \(n=23 \)
 - Did not receive allocated intervention \(n=0 \)

Follow-Up

- Lost to follow-up \(n=0 \)
 - Discontinued intervention
 - Difficult airway \(n=1 \)
 - Inadequate tube size \(n=1 \)

Analysis

- Analyzed \(n=21 \)
 - Excluded from analysis \(n=0 \)
- Analyzed \(n=20 \)
 - Excluded from analysis \(n=0 \)
- Analyzed \(n=20 \)
 - Excluded from analysis \(n=0 \)
Figure 2

The figure illustrates the heart rate (HR) in beats per minute (bpm) over a time course with three different Sevo concentrations: 3%, 4%, and 5%. The data is represented by the following markers:

- **Sevo-3%**: Black circles
- **Sevo-4%**: Black squares
- **Sevo-5%**: Black upside-down triangles

Time points are labeled as T0, T1, T2, T3, T4, and T5. The figure includes error bars indicating variability in the data. Statistical significance is denoted with two asterisks (* *), indicating a significant difference.
Figure 4

The graph shows the time course of HFnu (%) over different time points (T0 to T5). The data is represented for three different concentrations: Sevo-3%, Sevo-4%, and Sevo-5%. The graph indicates a pattern in the change of HFnu (%) over time for each concentration.