Title

Efficacy of a Behavioral Self-help Treatment With or Without Therapist Guidance for Insomnia With Co-morbid Problems – a Randomized Controlled Trial.

Authors, e-mails and Affiliations
1Susanna Jernelöv (Susanna.Jernelov@ki.se), PhD, 1,2,3 Mats Lekander (Mats.Lekander@ki.se), Prof, 4Kerstin Blom (kerstin.blom@ki.se), MSc, 4Sara Rydh (sara.rydh@sll.se), MSc, 4Brjánn Ljótsson (Brjann.Ljotsson@ki.se), PhD, 1,2 John Axelsson (John.Axelsson@ki.se), PhD, 4Viktor Kaldo (viktor.kaldo@ki.se), PhD.

1 Section of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
2 Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
3 Stress Research Institute, Stockholm University, Stockholm, Sweden
4 Division of Psychiatry, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden

Corresponding author
Susanna Jernelöv
Karolinska Institutet
Department of Clinical Neuroscience
Section of Psychology
SE-171 77 Stockholm
Sweden
Phone: +46 8 524 82 457
Fax: +46 8 30 72 98
E-mail: Susanna.jernelov@ki.se
Abstract

Background
Cognitive behavioral therapy is treatment of choice for insomnia, but availability is scarce. Self-help can increase availability at low cost, but evidence for its efficacy is limited, especially for the typical insomnia patient with co-morbid problems. We hypothesized that a cognitive behaviorally based self-help book is effective to treat insomnia in individuals with co-morbid problems, and that the effect is enhanced by adding brief therapist telephone support.

Methods
Volunteer sample; 133 media-recruited adults with insomnia. History of sleep difficulties (mean [SD]) 11.8 [12.0] years. 92.5% had co-morbid problems (e.g. allergy, pain, and depression). Parallel randomized (block-randomization, n>21) controlled “open label” trial; three groups – bibliotherapy with (n=44) and without (n=45) therapist support, and waiting list control (n=44). Assessments before and after treatment, and at three-month follow-up. Intervention was six weeks of bibliotherapeutic self-help, with established cognitive behavioral methods including sleep restriction, stimulus control, and cognitive restructuring. Therapist support was a 15-minute structured telephone call scheduled weekly. Main outcome measures were sleep diary data, and the Insomnia Severity Index.

Results
Intention-to-treat analyses of 133 participants showed significant improvements in both self-help groups from pre to post treatment compared to waiting list. For example, treatment with and without support gave shorter sleep onset latency (improvement minutes [95% Confidence Interval], 35.4 [24.2 to 46.6], and 20.6 [10.6 to 30.6] respectively), and support gave a higher remission rate (defined as ISI score below 8; 61.4%), than bibliotherapy alone (24.4%),
p’s<.001). Improvements were not seen in the control group (sleep onset latency 4.6 minutes shorter [-1.5 to 10.7], and remission rate 2.3%). Self-help groups maintained gains at three-month follow-up.

Conclusions

Participants receiving self-help for insomnia benefited markedly. Self-help, especially if therapist-supported, has considerable potential to be as effective as individual treatment at lower cost, also for individuals with co-morbid problems.

Trial registration

ClinicalTrials.gov, NCT01105052,

http://clinicaltrials.gov/ct2/show/NCT01105052?term=NCT01105052&rank=1
Background

In the general population, about one third suffers from one or more symptoms of insomnia, and about 10% fulfill the criteria for a clinical diagnosis [1]. Insomnia entails substantial individual suffering, and costs to society [2] through factors such as drug-use, increases in risks for long-term sick-leave, major depression, and hypertension [3-6].

Despite the high prevalence and negative consequences of insomnia, only a small percentage is treated [7,8], most commonly with pharmacotherapy [8]. However, many individuals with insomnia would prefer non-pharmacological treatment if available [9,10]. Cognitive behavioral therapy (CBT) has been shown to be effective for insomnia [11-13], and is therefore considered treatment of choice [14,15]. Still, CBT is provided only to a minority, at least partially due to the limited availability of CBT therapists [16] and high initial costs [17].

To improve the availability of effective psychological treatments, self-help protocols have been developed for a number of problems, including anxiety, depression, and tinnitus [e.g. 18]. Evaluations have often shown results comparable to face-to-face treatments [19], while self-help treatments are most likely more cost-effective [20,21]. Although thorough health-economic studies on the cost-effectiveness of self-help are still in their infancy, the potential for helping more people to a lower cost is obvious. Self-help protocols have been developed also for insomnia, and in a recent meta-analysis, Van Straten & Cuijpers concluded they are effective for individuals with primary insomnia [17].

However, since co-morbid insomnia is the most common form of insomnia [22], it is crucial to find out if the previous positive results also generalize to the wider group with co-morbidities. Delivered individually or as group therapy, CBT for insomnia is useful for
patients with co-morbidities [e.g. 23,24,25], but data on the effect of self-help treatments for these individuals is limited.

Therapist guidance can improve the effects of self-help treatments and reduce drop-out rates [21,26]. This seems true also for self-help CBT for insomnia [17], although the few studies comparing self-help with and without therapist guidance are limited by rather low power and have excluded individuals with co-morbidities [27,28]. It is also unclear whether the differences between guided and unguided participants seen directly after treatment are stable over time. In addition, previous evaluations of insomnia treatments have focused mainly on sleep-timing measures, while studies investigating effects of insomnia treatments on daytime functioning and psychological distress are lacking.

The objective of the present study was to compare the effects of a CBT-based self-help treatment for insomnia given with or without therapist support to a waiting list control group. To compensate for limitations in previous studies we wanted to include individuals from the general population with co-morbidities (except counter indicated problems, such as sleep apnea and suicidality), and measures also evaluating daytime functioning and psychological distress.

Our hypotheses were that participants would benefit from treatment both directly after the treatment and at three-month follow up, and that support would enhance outcome. We hypothesized that these improvements would be seen in response and remission rates, sleep timing, subjective measures of sleep, and daytime functioning. No differences in outcome due to co-morbid problems were expected.
Methods

Ethics

This study was approved by the Regional Ethical Review Board in Stockholm on February 2, 2008, identification number 2008/23-31/4.

Participants

Participants were recruited from all over Sweden, through media and websites. Interested individuals were directed to a web-site with a description of the study, informed consent and screening forms. All assessments were conducted on the Internet or telephone. No monetary compensation was given for participation, but the participants did not pay for the treatment.

The inclusion criteria for participants were: be at least 18 years old; meet research criteria for insomnia according to the American Academy of Sleep Medicine [29]; have insomnia at a clinical level defined as more than 10 points on the Insomnia Severity Index (ISI) [30]; duration of insomnia more than four weeks, have adequate Swedish language skills; have access to a computer and Internet for filling out online forms; be available for assessments and treatment during the course of the study; absence of other sleep disorders that require other treatment (e.g. sleep apnea); no severe somatic or psychiatric disorders that are the only cause of insomnia, contraindicative of the treatment (e.g. bipolar disorder), or require other treatment that cannot be combined with this insomnia treatment; no severe depression (defined as > 30 points on MADRS-S, see below) or suicidality (≥ 4 points on MADRS-S, item 9); no severe alcohol or drug dependence; no night shift work; no ongoing other insomnia treatment or previous CBT for insomnia; not having a self-help book for insomnia based on CBT techniques at home. Individuals were not excluded due to using sleep medications.
Intervention

The self-help book [31] is based on well-established CBT-models and techniques [30,32], and has two parts. The first part consists of psychoeducation about sleep and insomnia, including a simplified model for insomnia and three exemplary cases. The second part presents techniques, e.g. relaxation and visualization techniques, sleep restriction and stimulus control, cognitive restructuring techniques, and sleep hygiene. The techniques are presented under headings such as Stress-Relief, Work on Thoughts, and Help Your Sleep-Rhythm. One section aims to analyze the reader’s personal situation using a Sleep Diary and a so called Treatment Guide designed to help determining which techniques to focus on, and a separate chapter focuses on sleep medication and sleep medication tapering. A CD with audio relaxation and visualization exercises is included. The final chapter focuses on relapse prevention.

Treatment phase

The book was sent to the participants in the two treatment groups, together with a letter encouraging them to start reading and working with the program as soon as possible. Participants in the group without therapist support then worked independently during the six week treatment period.

Participants in the group receiving therapist support were contacted by telephone to schedule an appointment for each week of the treatment (i.e. six telephone appointments), and were encouraged to start reading the book, filling out the digital Treatment Guide and Sleep Diary and e-mailing these to the therapist before their first scheduled telephone appointment.

All telephone appointments were conducted using a structured guide. For instance, the first appointments focused on getting started, analyzing the patients’ situation, and setting a sleep window for sleep restriction, and the final telephone appointment focused on relapse
prevention. Each appointment was kept to a maximum of 15 minutes during which therapists also coded progress and homework assignments on a structured evaluation sheet.

Therapists in the present study were in their final year of training as clinical psychologists. Adherence to the treatment protocol was ascertained through the use of the written therapist guide, the structured evaluation sheet, and the self-help manual and supervision of therapists by an experienced clinician (SJ).

Participants in the control condition received the treatment book with no support after the three-month follow-up assessment.

Measures

All self-report questionnaires were filled out over the Internet, which improves the quality of data since missing items are not accepted and type of input can be automatically validated before data is submitted by the participants. In addition, the relative anonymity of questionnaires on the Internet has been suggested to reduce social desirability of respondents [33].

Primary outcome measures

The Insomnia Severity Index (ISI) [30] is a much used, 7-item patient-reported outcome measure assessing the severity of initial, middle and late insomnia; sleep satisfaction; interference of insomnia with daytime functioning; noticeability of sleep problems by others; and distress about sleep difficulties. A 5-point scale (0-4) is used to rate each item, yielding a total score of 0 to 28. The ISI has adequate psychometric properties and is sensitive to measuring treatment response [34]. Treatment response and remission rates were calculated from the ISI; as suggested by Morin et al [35], participants were considered treatment responders if their ISI score changed with 8 points or more compared to pre-assessment, and as treatment remitters if their absolute ISI score was less than 8.
Sleep timing was measured with a sleep diary [30], which is the most widely used outcome measure in insomnia research [36], and was recorded during one week at each assessment point. The sleep diary includes registration of bed time, time of falling asleep, length of night time awakenings, time of waking up and time of getting out of bed. Means of the daily ratings were calculated for sleep onset latency, wake after sleep onset, total sleep time, sleep efficiency, sleep quality, and bed-time stress.

Secondary outcome measures

The sleep diary was also used to gauge subjective sleep quality, stress at bed time, and overall day-time functioning. The latter included questions for day-time fatigue ("how tired you have felt today"), and positive day-time ratings ("how alert/well functioning/happy you have felt today"). Each of these items were rated from 0 ‘not at all’ to 5 ‘very much so’ and the three positive day-ratings were combined to a composite score (Crohnbach’s alpha = 0.893). All subjective sleep measures and measures of day-time functioning were also calculated as means over the week.

The Dysfunctional Beliefs and Attitudes about Sleep (DBAS) is a 30-item self-report measure identifying sleep disruptive cognitions [37]. Although developed as a visual analogue scale, it was transformed into a Likert-type scale with responses 0-10 for the use on a web-site. Scores range is 0-300.

The Sleep-Related Behaviour Questionnaire (SRBQ) is used to assess counter productive safety behaviors in insomnia [38]. The scale has 32 items which are scored between 1 (almost never) to 5 (almost always), yielding a total score range of 32-160.

The Perceived Stress Scale-10 items (PSS-10) measures the perceived stress in daily life [39,40]. The PSS-10 has 10 items with response alternatives 0 (never) to 4 (very often). Total score ranges from 0-40.
The Clinical Outcomes in Routine Evaluation - Outcome Measure (CORE-OM) evaluates general psychological distress [41]. The 28-item scale used has response alternatives 0 (often) to 4 (almost all the time), yielding a total score between 0 and 112.

Power calculation and sample size

Power estimates based on the effects found in previous studies (e.g. [27], d=0.6 to 1.0) suggested at least 44 participants in each group, for a power of 80%.

Randomization and blinding

133 participants were block-randomized (n≥21) by KB and SR via a true randomization process (www.random.org) to three groups; 44 to bibliotherapy with support, 45 to bibliotherapy only, and 44 to the waiting list control group (see figure 1). Self report measures precluded blinding.

Statistical methods

One way ANOVAs and χ^2 associations were used to compare groups on background variables. To reduce the risk of mass-significance due to the many outcome measures, repeated measures MANOVAs were initially conducted with treatment group as between-subjects variable. For the MANOVAs, the outcome variables were combined into three conceptually coherent groups; sleep timing (table 2), subjective sleep (table 3), and measures of day-time functioning and psychological distress (table 4). Three MANOVAs were used for the pre- to post-comparison, and three MANOVAs were used to compare pre- to follow-up assessments. When a MANOVA showed significant interaction, follow-up tests were performed with a 2x2 ANOVA for each separate outcome measure.

Effect sizes are given as η^2-values (Eta squared) for interactions, and as Cohen’s d for within group changes. To evaluate effects of the general burden of co-morbidity on outcome,
number of co-morbid problems was correlated (Spearman’s Rho (ρ) with change-scores for the ISI. To test for the impact of specific co-morbid problems, repeated measures ANOVAs were calculated with presence or non-presence of each of the most prevalent problems as between-groups-factor, and with ISI as the dependent variable at the three different time-points.

For all analyses of variance, Huynh-Feldt corrections were applied when sphericity could not be assumed, based on Mauchly’s Test of Sphericity. Thirteen outliers were found in sleep diary data, and following the recommendations by Tabachnick & Fidell [42], score alteration was performed in order not to lose valuable data, but lessen the impact of outliers. Analyses were conducted using PASW statistics 17 and 18 (SPSS Inc. Chicaco, Illinois).

Results

Attrition, drop-out, and use of other treatments

Attrition and drop-out at post- and follow-up assessments were low (see figure 1).

------------------ Insert figure 1 about here ------------------

In the waiting list group, six participants sought other treatments during the first period (from pre- to post-assessments), and two during the second period (from post-assessment to follow-up). In the group receiving bibliotherapy with therapist support, only one participant sought another treatment during the first period, and two during the second. In the bibliotherapy group the corresponding figures were two and six participants respectively. A trend for an association between number of participants seeking other treatments, and group, is seen for the first period ($\chi^2=5.174$, df=2, p= .075, N=131), but not for the second. Data from these individuals are also included in the analyses.
Recruitment and baseline data

Table 1 presents baseline data of the 133 participants from all over Sweden. Only 7.5% of included participants were diagnosed with primary insomnia with no concurrent active disorder or problem affecting sleep. Participants reported on average 3.4 (SD=2.3) co-morbid problems, the most common being allergic diseases (57.9%), acute (31.6%) and chronic (15%) pain, stress (29.3%), restless legs (25.6%), nightmares (24.8%), snoring (23.3%), bruxism (21.8%), high blood pressure (15%), nocturia (11.3%), tinnitus (11.3%), depression (11.3%), and anxiety (10.5%). Neither the number of co-morbid problems or presence of any specific problem, nor any of the background variables, differed between the three groups (see below). However, sleep medication use was significantly higher in the waiting list control group compared to the group receiving bibliotherapy without support.

--------------------- Insert table 1 about here ---------------------

Participants were enrolled and screened between February 26th and March 30th 2008. Pretreatment assessments were conducted between March 27th and April 28th, post-treatment assessments between May 22nd and June 13th, and follow-up between September 11th and October 27th, all in 2008.

Numbers analyzed

Except correlations and ANOVAS analyzing effects of co-morbidity, all outcome analyses are computed for intent-to-treat data with last observation carried forward, based on 133 pre-assessment questionnaires and 132 pre-assessment sleep diaries (one in the control group lost due to poor data quality).
Primary outcomes

Treatment response and remission rates

As seen in figure 2, there were very few responders and remitters in the waiting list control group (1 (2.27%) for both variables), more in the bibliotherapy group (15 (34.9%) and 11 (24.4%)), but by far the most responders and remitters were seen in the group receiving bibliotherapy with therapist support (30 (68.2%) and 27 (61.4%)) at post-assessment. The differences between groups remained at three-month follow-up, and were significant both for post- and three-month follow-up assessments ($\chi^2 = 17.047 – 42.289$, df=2, all p’s<.001, N=133).

--------------------- Insert figure 2 about here --------------

Sleep timing

Two MANOVAs were conducted with sleep diary data concerning aspects of sleep timing (i.e. sleep onset latency, wake after sleep onset, total sleep time, and sleep efficiency) as dependent variables, the first comparing all three groups between pre- and post-treatment, and the second between pre-treatment and three-month follow-up. Both MANOVAs showed significant interactions (pre-post: $F_{(8, 252)} = 9.351, p = .000, \eta^2_p = 0.229$; pre-follow up: $F_{(8, 252)} = 3.785, p = .000, \eta^2_p = 0.107$).

Separate analyses were performed to establish which interactions were significant (see table 2a and 2b). From pre- to post-assessments, bibliotherapy with therapist support gave larger gains than did waiting in all sleep timing measures except total sleep time, and also larger gains in wake after sleep onset, and sleep efficiency, compared to bibliotherapy. Bibliotherapy improved sleep onset latency and sleep efficiency more than did waiting. Regarding changes
from pre- to three-month follow-up assessments, bibliotherapy with therapist support now produced larger gains in all sleep timing measures, compared to waiting. However, only the difference in sleep efficiency remained between bibliotherapy with and without support. Finally, differences between bibliotherapy and waiting now included total sleep time, as well as the earlier differences seen in sleep onset latency and sleep efficiency.

Ancillary analyses

Subjective sleep measures, insomnia severity and sleep quality

Two MANOVAs were conducted with questionnaire ratings of subjective sleep as dependent variables (i.e. insomnia severity (ISI), sleep related behaviors (SRBQ), and dysfunctional beliefs (DBAS), and sleep diary data concerning subjective measures of sleep; bed time stress level and sleep quality). Both MANOVAs showed statistically significant effects of interaction (pre-post: \(F_{(10, 250)} = 11.358, p < .001, \eta^2_p = .312 \); pre-follow up: \(F_{(8, 252)} = 7.174, p < .001, \eta^2_p = .185 \)).

Separate 2x2 ANOVAs were performed to establish which interactions were significant (see table 3a and 3b). From pre- to post-assessments, bibliotherapy with therapist support produced larger improvements in all subjective sleep ratings than did waiting, and also larger improvements than bibliotherapy alone. Bibliotherapy (without therapist support) resulted in larger improvements than did waiting, in all aspects but bed time stress levels. At three-month follow-up, all changes were maintained in the two treatment groups, and the differences between groups remained stable.
Day-time functioning and psychological distress

Two MANOVAs were conducted with diary ratings of day-time functioning (i.e. Positive Day Time Ratings and Day Time Fatigue), and questionnaire ratings of perceived stress (PSS) and psychological distress (CORE-OM) as dependent variables. Both MANOVAs showed statistically significant effects of interaction (pre-post: $F_{(8, 252)}=3.724$, $p<.001$, $\eta^2_p=.106$; pre-follow up: $F_{(8, 252)}=2.193$, $p=.029$, $\eta^2_p=.065$).

Again, separate 2x2 analyses were performed to establish which interactions were significant (see table 4a and 4b). From pre- to post-assessments, bibliotherapy with therapist support produced larger improvements on all measures of day-time functioning and psychological distress than did waiting, and also larger improvements than bibliotherapy alone in all aspects but perceived stress. Bibliotherapy alone did not result in larger improvements in these measures compared to waiting. At three-month follow-up the differences between bibliotherapy with support and waiting remained stable, with the exception of psychological distress. The bibliotherapy groups, with or without support, now had similar improvements in all measures. At this assessment point, participants who had received bibliotherapy without support had improved more on day-time ratings and fatigue than participants in the waiting list control condition.

Co-morbidity and outcome

At post-treatment, the correlation between total number of co-morbid problems and ISI change scores was small but significant and negative ($\rho(87) = -0.22$, $p=.040$). In other words, larger number of co-morbid problems was associated with slightly lower improvements in insomnia severity. This association was not significant at three-month follow-up ($\rho(79) = -0.19$, $p=.095$).
To find out if specific co-morbid conditions affected treatment outcome, ANOVAs were performed for the more prevalent co-morbid conditions (i.e. allergy, acute pain, stress, restless legs, nightmares, snoring, bruxism, high blood pressure, chronic pain, nocturia, tinnitus, depression, and anxiety) with ISI as the dependent variable. To increase stability of measurement for each diagnosis, individuals whose problem could not be clearly verified or ruled out at the assessment interview were not included in these analyses. ANOVAs showed significant main effects of group only for chronic pain ($F_{(1,131)}=6.937$, $p=.009$) and stress ($F_{(1,105)}=6.633$, $p=.011$), i.e. individuals with chronic pain or stress problems suffered more severe insomnia at all occasions. Only individuals with nightmares responded to the treatment with less marked improvements on the ISI, as seen by an interaction effect for nightmares ($F_{(1,83,221.27)}=3.566$, $p=.034$).

Sleep medication use

Out of 59 individuals using sleep medication at pre-assessment (see table 1), 21 had ceased sleep medication at the post-assessment interviews. Relatively few of these, 4 out of 25 (16.7%) and 3 out of 14 (21.4%), were found in the waiting list and bibliotherapy groups respectively, compared to 14 out of 20 (70%) in the group receiving bibliotherapy with therapist support. This advantage for the group receiving bibliotherapy with therapist support was significant ($\chi^2=15.179$, df=2, $p>.001$, N=58).

To control for the possibility that non-users started to use sleep medication during treatment, the total number of participants using sleep medication post-treatment was also compared. In this analysis, 7 were found in the group receiving therapist support, 11 in the bibliotherapy only group, and 21 in the waiting list control group, and this difference was significant ($\chi^2=12.181$, df=2, $p=.002$, N=132).

At three-month follow-up assessment, 7 participants in the group receiving therapist
support used sleep medication, which was significantly lower than 15 in the bibliotherapy group, and 19 in the waiting list control group ($\chi^2=8.355$, df=2, p=.015, N=130).

Adverse events

The most important adverse event was one individual in the treatment group with support who dropped out of treatment due to increased pain as an effect of sleep restriction. In all, 23 individuals in the treatment groups reported one adverse event and 2 individuals reported two adverse events. More specifically, 9 felt that sleep restriction made them more tired or was too demanding, 2 individuals in the treatment group without support dropped out of treatment because some part of the treatment was too demanding, 3 felt the sleep diary increased their sleep related concerns, or was too demanding to fill out, 4 did not agree with the suggested life-style changes or sleep-wake rhythm, another 2 had trouble sleeping when ceasing sleep medication, and 1 experienced increases in other problems when sleep was no longer a problem. The remaining 5 experienced slight adverse experiences, such as having a hard time not watching TV in bed, or not drinking coffee in the evenings, and one reported having problems in that their sleep was so sound after treatment that they did not hear the alarm in the morning.

Discussion

In this study, we demonstrate that using a self-help book to deliver a CBT-treatment can markedly reduce insomnia severity, and improve sleep and day-time functioning, in adults with insomnia and co-morbid problems. The effects can be enhanced by adding brief, structured weekly therapist support over the telephone.
As hypothesized, the results show that self-help bibliotherapy had a strong positive effect on sleep in this group of participants with insomnia and co-morbid problems. The effects were manifest both for remission rates, sleep timing and subjective measures of sleep as well as for ratings of day-time functioning. Gains seen immediately after treatment were to a large extent maintained three months later. Therapist supported treatment produced larger overall effects at post-treatment as well as at three-month follow-up, compared to treatment without therapist support or no treatment. The number of participants with clinically significant improvements in insomnia severity (i.e. responders and remitters) was larger, effects on sleep, day-time functioning and perceived stress were larger, and medication use was greatly reduced in the group receiving therapist support as compared to the group not receiving therapist support, and the waiting list control group. Although the difference compared to treatment without support was somewhat attenuated at three-month follow-up, participants in the therapist-supported group were still better off in several important aspects. In contrast, Mimeault and coworkers found the extra effect of brief therapist contact become negligible at three-month follow-up [27]. However, our findings are in line with the Van Straten & Cuijpers meta-analysis of self-help treatments of insomnia [17], as well as research in self-help for areas such as depression and anxiety, and support the notion that therapist contact with participants does enhance treatment outcome [26].

The effect of therapist support is impressive considering its limited amount (15 minutes per week for 6 weeks) and the fact that the support took place over the telephone. In fact, effects in this group compare well to those demonstrated for primary insomnia, both in a recent study of CBT group-therapy and CBT + medication [35], and in a meta-analysis on CBT and medication [13]. This may be due to the high level of structure of the telephone calls, focusing on sleep restriction and stimulus control. In contrast, bibliotherapy without therapist
support produced slightly lower effect sizes for most measures, comparable to those seen previously in self-help treatments for insomnia [17].

Considering that the majority of patients with insomnia also suffer from co-morbid problems [43,44], the present findings of positive treatment effects in insomnia severity in a group with heterogeneous co-morbid problems may be of great importance. It should be noted, however, that larger number of co-morbid problems was associated with slightly lower improvements in insomnia severity. Although only 4% of the variance was explained by co-morbidity, the findings point at a need to further evaluate the influence of co-morbid disorders on treatment outcome. Individuals with nightmares experienced significantly lower gains from treatment, which could indicate a need to improve the treatment for this rather large group. As mentioned earlier, Mimeault and co-workers [27] did not find lasting differences between the groups receiving support and not. However, only participants with primary insomnia were included in that study. The findings in the present study could indicate that individuals with co-morbid disorders may benefit more from therapist support than do individuals with primary insomnia. From a clinical point of view, such a relation would be of great importance and merits further investigation.

Several limitations should be noted in the present study; e.g. the use of self-reports as opposed to objective sleep timing measures. Although sleep diaries represent a core assessment component in insomnia research [45], patients with insomnia generally over-estimate wake-time [46]. Nonetheless, sleep diaries have been shown to correlate well with objective measures [47]. It is likely that these results can be compared to those of other studies using sleep diaries, but objective measures, such as polysomnography or actigraphs, would be needed to confirm objective changes in sleep.

Since we were interested in maximizing generalizability, selection criteria were liberal, which yielded a heterogeneous sample. A concern regarding generalization is that our
participants had a high education level, and generally a good or at least adequate economic situation.

The study also has several strengths. We used an untreated group to control for fluctuations over time up until five months after the beginning of treatment, and analyzed interactions to control for changes not due to treatment. We also had a comparably large number of participants in each treatment group, and included measures of day-time functioning, which have not been adequately studied in earlier insomnia treatment research. The heterogeneous sample extends previous positive findings on individuals with primary insomnia to also include the typical insomnia patient with co-morbid problems.

Conclusions

Self-help CBT-based bibliotherapy can effectively alleviate insomnia in a self-recruited sample with a wide range of co-morbid disorders. Brief structured guidance from a therapist enhanced outcome, and treatment gains as well as differences between groups were largely maintained three months after the end of treatment. In particular when considering its potential for being easily distributed and low in cost, self-help CBT alone or with brief therapist support is likely to help the large group of individuals with insomnia including those with co-morbid problems.

Competing interests

Financial disclosure: Susanna Jernelöv is the author of the commercially available self-help book used in this study.
Authors contribution

SJ contributed to the conception and design of the study, wrote the treatment manual, and conducted supervision of therapists. She also took part in the acquisition, analysis and interpretation of data, and was the main author of the manuscript. All authors contributed to drafting and critical review of the manuscript and approved the final version. In addition, ML participated in conception and design, analysis and interpretation of data. KB and SR contributed to conception and design, acquisition, analysis and interpretation of data, and also acted as therapists. BL participated in acquisition and analysis of data and technical support. JA contributed to the conception and design, and interpretation of data. VK contributed to the conception and design, acquisition, analysis and interpretation of data, and statistical expertise.

Acknowledgments and funding

Preparation of this article was supported by grants from Osher Centre for Integrative Medicine, Centre for Allergy Research, the Karolinska Institutet, AFA Sickness Insurance Research Fund, the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, and the Bror Gadelius memory foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The authors would like to thank Ingrid Andrén and Sofi Sjöholm Jensen for help with acquisition of data, Jonas Ramnerö for fruitful methodological discussions, Per Carlbring for help with recruitment and technical support, and last but not least, all our participants.
References

29. Edinger JD, Bonnet MH, Bootzin RR, Doghramji K, Dorsey CM, Espie CA, Jamieson AO, McCall WV, Morin CM, Stepanski EJ et al: Derivation of research diagnostic criteria

Figure legends

Figure 1.
Short Title: CONSORT Flow chart. Participant Flow Throughout the Study.

Figure 2.
Short Title: Proportion of Treatment Responders and Remitters according to Treatment Group.

Legend:

(a) Defined as a change score on the Insomnia Severity Index of 8 points or more from pre-treatment
(b) Defined as an Insomnia Severity Index score of less than 8 points
439 Potential participants screened on webpage

237 Interviewed

161 Invited to pre-treatment assessments

202 Excluded
123 did not meet inclusion criteria
36 non responsive
43 declined further participation

76 Excluded after interview
53 did not meet inclusion criteria
23 declined further participation

26 did not finish pre-treatment assessments
2 declined further participation

133 Randomized

Allocation

Bibliotherapy with therapist telephone support (n=44)

1 drop-out from treatment;
1 questionnaire &
3 diaries lost to post-assessment

Bibliotherapy (n=45)

2 drop-outs from treatment;
1 questionnaire &
7 diaries lost to post-assessment

Waiting list Control (n=44)

1 diary at pre-treatment lost due to poor data quality
5 questionnaires &
8 diaries lost to post-assessment

Post-assessment
43 questionnaires
41 sleep diaries
44 interviews

Post-assessment
44 questionnaires
38 sleep diaries
45 interviews

Post-assessment
39 questionnaires
36 sleep diaries
43 interviews

Follow-up assessment
41 questionnaires
40 sleep diaries
44 interviews

Follow-up assessment
39 questionnaires
37 sleep diaries
44 interviews

Follow-up assessment
39 questionnaires
39 sleep diaries
41 interviews

Figure 1
Figure 2. Proportion of Treatment Responders and Remitters according to Treatment Group

Treatment responders (a)

- **ISI change score pre-post**
- **ISI change score pre-fu**

<table>
<thead>
<tr>
<th>Participants %</th>
<th>Bibliotherapy with support</th>
<th>Bibliotherapy</th>
<th>Waiting list control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliotherapy with support</td>
<td>70</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>Bibliotherapy</td>
<td>30</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Waiting list control group</td>
<td>10</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

Treatment remitters (b)

- **ISI post-treatment**
- **ISI follow-up**

<table>
<thead>
<tr>
<th>Participants %</th>
<th>Bibliotherapy with support</th>
<th>Bibliotherapy</th>
<th>Waiting list control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bibliotherapy with support</td>
<td>60</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Bibliotherapy</td>
<td>40</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Waiting list control group</td>
<td>20</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
Additional files provided with this submission:

Additional file 1: Table 1 Background variables.doc, 62K
http://www.biomedcentral.com/imedia/137753507606279/supp1.doc

Additional file 2: Table 2 Results Sleep Timing.doc, 74K
http://www.biomedcentral.com/imedia/1506311919606279/supp2.doc

Additional file 3: Table 3 Results Subjective sleep measures.doc, 79K
http://www.biomedcentral.com/imedia/9690107606279944/supp3.doc

Additional file 4: Table 4 Results Day-time functioning.doc, 69K
http://www.biomedcentral.com/imedia/1536711466606279/supp4.doc