Uniformity of Doppler waveform indices nomograms for fetal middle cerebral artery in various populations: a cross-sectional study

Mohammad Kazem Tarzamni, Fatemeh Gatreh Samani, Nariman Nezami, Sakine Vahedinia, Maryam Tarzamni.

1 Department of Radiology, Tabriz University of Medical Sciences, Tabriz, Iran.
2 Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
3 Young Researchers Club, Tabriz, Iran.
4 Obstetrics and Gynecology ward, 29 Bahman Hospital, Tabriz, Iran.
§ Corresponding author

Email addresses:

MKT: Tarzamni@yahoo.com
FGS: F.Gatrehsamani@gmail.com
NN: Dr.Nezami@gmail.com
SV: SVahedinia@yahoo.com
MT: MarTarzamni@yahoo.com
Abstract

Background:
The aim of prenatal evaluation is the prevention of fetal death. One of the main methods of fetus health evaluation before labor is Doppler flow velocity waveform analysis of fetal vessels. Evaluation of Doppler wave of middle cerebral artery (MCA) can predict most of the at risk fetuses in high risk pregnancies. In this study, we tried to obtain normal values and their changes during pregnancy for Doppler flow velocity indices (RI, PI, S/D ratio and PSV) of MCA in 20 – 40 weeks of normal pregnancies in Iranian population and compare them with other countries reference ranges. Also we evaluate the effect of fetal heart rate (FHR) on indices mentioned above.

Methods
In this descriptive cross–sectional study, 1037 pregnant women with normal pregnancy and gestational age between 20 to 40 weeks were studied about MCA Doppler examination. All cases were evaluated by gray scale ultrasonography initially and then Doppler study of MCA was performed.

Results
According to the results of this study, with progression of gestational age RI, PI, S/D ratio values of MCA decrease with parabolic pattern and PSV value increases with simple pattern. These changes were statistically significant (P=0.000) and were more characteristic during late weeks of pregnancy. The mean fetal heart rate had been significantly reduced also in correlation with pregnancy progression.

Conclusions
Values of RI, PI and S/D ratio indices reduced toward the end of pregnancy, but PSV increased. Despite the trivial difference, it seems that variation in populations didn’t affect desired indices nomograms and our findings were similar to other studies.
Background

Although for the first time, Satomura demonstrated that the Doppler ultrasonography (DU) technique could evaluate blood flow, but more than two decades passed until this technique was utilized in the assessment of fetal haemodynamics [1]. Currently, DU velocimetry of uteroplacental, umbilical and fetal vessels has become established method of antenatal monitoring, allowing the non-invasive assessment of fetal circulation [2] and its indices provide important information on the haemodynamics of the vascular area under study [3] that were not readily obtained from more conventional tests of fetal well-being [4, 5]. Circulatory changes, reflected in certain fetal Doppler waveforms, predict adverse perinatal outcome [6, 7]. In experienced hands, waveforms from a number of fetal vessels predict the occurrence and timing of adverse events.

Although umbilical arteries are the common vessel assessed by DU, but recent studies confirm efficacy and advocate middle cerebral artery (MCA) Doppler assessment [8, 9] and showed that evaluation of MCA flow velocimetry provide information about other fetal organs perfusion [10]. Because of its highest resistance indices and earlier presentation of diastolic blood flow, as ultrasound resolution improved and most importantly, pulsed and color coded DU advanced with better reproducibility, the use of color Doppler greatly improves the identification of the cerebral vessels, and the MCA has emerged as the vessel of choice in the Doppler assessment of fetal intracranial and other organs perfusion [11, 12].

MCA Doppler measurement is a well-known modality for detecting fetal compromise [13]. Some studies showed that MCA blood flow abnormalities were associated with hypoxia [1, 9, 14], adverse perinatal outcome [15] and suboptimal neurodevelopment [16]. Thus, its evaluation by means of pulsed Doppler has become standard for antenatal care of high-risk pregnancies such as those suspected to affect by growth restriction [17], multiple pregnancies [18], pregnancy-induced hypertension [19], fetal parvovirus B19 infection [20], fetal anemia
[17], Rh immunization and hydrops fetalis [8], fetal malformations [21] and large chorioangioma [22].

Because of the potential role of reference range for diagnosis abnormal condition, reference values for indices derived from the flow velocity waveforms of several vessels of fetus in uncomplicated pregnancies have previously been recorded [23-25]. Therefore, although some investigators attempted to tender reference range for MCA Doppler indices, but we felt the need to establish Doppler indices reference values of the fetal MCA for our own antenatal population and compare these finding with other authors.

Methods

This study was performed as a prospective cross-sectional (February 2004 to May 2007) analysis of Doppler measurements performed between 20 and 40 weeks of gestation in 1037 low risk pregnancies. A power of 90% and significance of 5% were applied to calculate sample size of 20 cases per each week of gestational age, but we enrolled at last 40 cases for each gestational week. All of these women were from a low-risk population and referred to receive routine prenatal care at our department. The research protocol was approved by the local ethics committee and written informed consent was obtained from every patient involved in the study prior to the examination.

Prior to Doppler assessment, initially all pregnant women underwent gray scale ultrasonography to evaluate multiple pregnancies, fetal anatomy and biophysical profile (the latter according to Manning’s criteria [26]) including abdominal circumference (AC), head circumference (HC), femur length (FL), and biparietal diameter (BPD). Estimated fetal weight was calculated according to the Shepard and Hadlock formulas. Furthermore, amniotic fluid volume and placental grade were evaluated. The fetal heart rate was also
determined by the umbilical artery velocity waveforms, and was between 120 and 160 beats per minute in normal pregnancies.

Doppler examinations were performed by a single investigator in Alzahra Obstetrics & Gynecology Hospital using Hitachi model EUB 525 (Hitachi Medical Corp, Tokyo, Japan) by 3.5 MHz convex transducer. Before beginning MCA assessment, a uterine artery Doppler waveform was obtained and then Doppler examinations were performed on the woman placed in a recumbent or semirecumbent position. The high-pass filter was set at 50-100 Hz in both imaging and Doppler modes to eliminate signals from slowly moving tissues. The power setting was <50 mW/cm2 spatial temporary average velocity in both imaging and Doppler modes and the sample volume was 2-3 mm for the MCA. The scanning plane was adjusted to obtain an insonation angle as close as possible to 0°, and always <20°. During periods of stopped fetal breathing and movements, the image was frozen and the waveforms were quantified. Attention was taken to avoid any unnecessary pressure on the fetal head and the mechanical and thermal indices were always kept below 1. Every patient underwent only one examination. To measure the MCA, an ultrasound scan of the fetal head was performed to obtain a transverse view at the level used usually to measure BPD. The transducer was then moved parallel to this plane towards the base of the skull at the level of the lesser wing of the sphenoid bone to identify the circle of Willis. At the level of the lesser wing of the sphenoid bone, the MCA is easily demonstrated as a major branch of the circle of Willis. After localization of the MCA by color, Doppler flow velocity was measured from proximal portion of MCA. When the best quality was obtained for flow velocity waveforms, at least three waveforms were measured by sonologist and averaged. Multiple waveforms recordings such as PSV were obtained and RI, PI and S/D ratio were calculated:

RI = PSV - end diastolic velocity/PSV

PI = PSV - end diastolic velocity/mean velocity
Patients were included in the study if they met the following criteria: (I) low risk pregnancy, (II) no evidence of fetal structural anomalies on the sonogram and normal neonatal anatomy, (III) accurate gestational age based on the last menstrual period with no difference from ultrasound parameters of more than 7 days, (IV) gestational age between 20 and 40 weeks, (V) normal fetal growth (more than 10th and less than 90th centile growth curves), (VI) normal uterine and umbilical arteries Doppler pattern by local reference values, (VII) availability of a detailed follow-up, (VIII) nonsmoking and nonalcoholic women, (IX) No history of hypertension, diabetes mellitus, autoimmune conditions, preeclampsia, abnormal vaginal discharge and bleeding, induced pregnancy, hydrops fetalis, and hormonal contraceptive agents intake such as LD.

Also patients who was developed the following conditions excluded from study: (I) congenital abnormalities, (II) oligohydramnios (amniotic fluid index (AFI) <5) according to Phelan’s criteria [27], (III) biophysical profile <6, or estimated fetal weight outside the 90% normality range [28], (IV) inability to obtain MCA Doppler waveforms, (V) appearance of hypertension or preeclampsia during period after our assessment, (VI) loss of follow up, (VII) abnormal fetal biometry with an estimated fetal weight below the 10th centile or higher than the 90th centile in comparison with first trimester or early second trimester ultrasound findings (cases of IUGR, SGA and Large for gestational age), (VIII) only those who delivered a full term healthy baby with birth weight between the 10th and 90th percentiles for GA and gender were included for further data analysis, (IX) women with a notch and or a raised RI in a umbilical artery were excluded from the study as the risk of intrauterine growth restriction and pre-eclampsia [29].

Statistical analysis was performed using SPSS 14.0 (SPSS Inc., Chicago, IL, USA). Variables demonstrated as Mean±SD. A value of $P < 0.05$ was considered statistically significant. Pearson correlation and Regression were used for evaluation of correlation between indices.
and gestational age. Reference ranges (90% range between 5th and 95th centiles) and the 95% confidence interval were constructed for each parameter and displayed in graphic form. Linear, quadratic and cubic regression models were fitted to estimate the relationship between fetal Doppler variables and gestational age (in weeks). The best fitting model for each variable was selected.

Results

Altogether, 1037 women were evaluated during this study and among them only 978 (94.31%) were enrolled in final analysis and 59 patient were excluded due to loss to follow up (23 cases), abnormal umbilical Doppler resistive index (11 cases), inability to MCA Doppler waveforms measurement (8 cases), SGA (7 cases), low birth weight (4 cases), LGA (3 cases), and preeclampsia development (3 cases).

The number of patients according to gestational age in weeks, patients` characteristics, mean and standard deviation for the MCA RI, PI, S/D ratio and PSV are shown in Table1. Also values and nomograms of RI, PI, S/D ratio, PSV and FHR, at 5, 50 and 95th percentile for each gestational age were showed respectively in Table 2 and figures 1 to 5. The reference curve of the resistive index is characterized by parabolic pattern, showing a decrease of 0.76 to 0.67 at 20–40 weeks of gestation, and a peak RI value of 0.85 at 28 weeks of gestation. A similar pattern was observed for the pulsatility index (1.72 to 1.23 with a peak PI value 2.05 at 28 weeks of gestation) and S/D ratio (20th week: 5.34, 40th week: 3.16 and peak in 30th week: 7.13). With regard to PSV, an increase of 20 to 54.42 cm/s with peak PSV value 60.85 in 39th week was noted for the observation interval. However, the reference curve of fetal heart rate was demonstrated a decreasing pattern of 151.69 to 136.5 per minute.

There was strong positive linear correlation between RI and PI (P=0.000, R= 0.886), RI and S/D ratio (P=0.000, R= 0.860), PI and S/D ratio (P=0.000, R= 0.863) and negative linear
correlation between PSV and PI (P=0.001, R= -0.170) and PSV and S/D ratio (P=0.012, R= -0.125). Also all of RI, PI, PSV and S/D ratio were not related to the fetal heart rate.

Our reference values for the RI, PI, S/D ratio and PSV were Compared to the results of Arduini et al. in Italy [30], Kurmanavicius et al. in Switzerland [31, 32],Mari et al. in USA [17, 33], Bahlmann et al. [10], Baschat et al. [5] in Germany, recently longitudinal study of Ebbing et al. [34] in Norway, and Rujiwetponsron et al. [35] and Komwilaisak et al. in Thailand [36], as the references established to date.

Discussion

Our findings demonstrated parabolic pattern for RI, PI, S/D and FHR curves and simple increasing pattern for PSV. Also, all of Doppler indices had linear correlation with gestational age.

In comparison of the RI for our reference curves with that published by Kurmanavicius et al [46], it is become distinct that reference limits during 24 to 40 weeks was lower about 0.6-1.1 for our curves. Like as our study, Bahlmann et al. [14] found that reference curve for the RI was characterized by a parabolic pattern (18 weeks: 0.68; 28 weeks 0.8; 42 weeks: 0.61). We have demonstrated such a pattern for RI with some difference in ranges (see Figure 1). At last, our finding was in close relation with Bahlmann finding. Rujiwetpongstorn’s nomogram for MCA RI during 11-20 weeks demonstrated decreasing pattern without parabolic pattern [49]. Interestingly, our study period comes to complete this study period it means that start point of our curve conjoining with end point of Rujiwetpongstorn’s RI curve.

The parabolic pattern of our PI curve is comparable to other studies [37, 38]. The fall in the fetal MCA PI after 28th week of gestation was probably reflected a decreasing vascular resistance with increasing gestational age [37] or correlation with deoxyribo nucleic acid production in fetal brain [38].
A comparison of the reference ranges established by this study with those of Arduini et al. [30] and Baschet et al. [5] shows almost identical parabolic pattern and reference values for the PI over the entire observation period. Conversely, the results reported by Bahlmann et al [10], Vyas et al [14], Mari et al [33], Ebbing et al. [34], and Komwilaisak et al. [36] showed higher PI values, despite their curves pattern are uniform our nomogram. The reasons for this discrepancy may be the 8- to 11-fold smaller number of patients included in Vyas and Mari studies and the different statistical methods and Doppler machines used may provide a further explanation for the marked deviations. Another important prerequisite for the deviation of accurate Doppler flow profiles from the MCA PI is that the pressure exerted by the ultrasound probe on the fetal head is kept to a minimum; if this is not accomplished, extremely low end-diastolic flow velocities are measured, leading to the calculation of higher PI values [39]. As rationalized about RI, end point of Rujiwetpongstorn [35] curve on 20th week was the same as our curve origin point.

There isn’t more study about S/D ratio range and pattern, expect Ertan study that reported nomogram with decreasing slop toward end of gestation [40]. In our study, S/D ratio nomogram (Figure 3) had parabolic pattern. Because the same factors were used to calculate the RI, PI and S/D ratio, similar pattern was expected. The principle reason for this pattern is decreasing blood flow resistancy with increasing of gestational age especially at the end of pregnancy that accompanying by blood flow volume increasing [23, 33].

Our study demonstrated that the MCA PSV was increased during the second half of gestation (Figure 4). This finding was similar to that in the second half of pregnancy as reported by Bahlmann et al. [10] and Ebbing et al [34], demonstrated a continuous increase of MCA PSV over the period from 18 to 42 and 19 to 41 weeks of gestation, respectively. Patterns were same but values were higher for Bahlmann and Ebbing. Despite the some differences in values, comparison of the PSV ranges in the MCA measured in this study with those reported
by Mari et al [32] and Kurmanavicius et al [17] demonstrates good agreement. Explanations for these dissimilarities were the use of different statistical methods, curve analysis model, different sample sizes and more importantly sonologist skill and experience. Furthermore, an inverse correlation exist between peak systolic or mean blood flow velocities and the fetal hemoglobin or hematocrite concentration, respectively, may be interfere in results of every study that wasn’t considered in major part of studies [17].

Our PSV curve interestingly is coming in follow up of Rujiwetpongstorn et al. [35] presented curves and start point of our curve identical with end point of their curve. As well as based on However, the variation of MCA indices in each gestational week was rather high.

Studies in early period of gestation (first trimester) showed that FHR had direct linear correlation with gestational age so FHR increase as pregnancy progress [41, 42]. As other authors’ reports and unlike first half of pregnancy increasing pattern [43], we demonstrated that FHR decrease synchronously with increasing of gestational age, after 20th week of gestation (during late second and third trimesters). Same results concerning decreasing pattern were reported by Park et al. [44] and Snijders et al. [45] using a computerized FHR analysis system.

A great number of DU reference curves have been obtained from various vessels of the fetal brain, yet primarily from the MCA. The results reported by these studies do not demonstrate any apparent difference between a longitudinal or cross-sectional study design (10, 33). This is clinically important to determine whether given MCA Doppler indices are normal or not, so normal MCA Doppler indices must be defined for each week of gestational age. Since these parameters may be varied among different population, population- specific nomograms may be needed. Although this study wasn’t the first reported establishing the nomogram of MCA Doppler indices but it was an important step in assessment reliability and specificity of previous reported normal range especially in our population.
The strengths of present study were first, an adequate sample size. Unequal sample size for each gestational week did not discredit our data because the sample size, at least twenty pregnancy women for each gestation, was adequately calculated and our enrolled population more than two fold of this volume. Second, we were able to measure at all gestational age from 20 to 40 weeks. Third, we used only one experienced ultrasonologist to avoid inter-observer variation. At last, we used only one high resolution ultrasonography machine and one trans-abdominal transducer to avoid equipment’s variation. As well as, our data had higher reliability based on this fact that all gestational age was established by careful history to identifying only patients with accurate date and confirmation by early ultrasound examination. Furthermore, all newborns were proven to have normal growth and no structural abnormality.

In some instances, differences were observed when comparing the reference ranges reported by various studies for the different parameters of the MCA. As noted previously for each Doppler index, the reasons are manifold and include: inconsistent choice of the wall filter, divergent size of the sample volumes, manual or automatic curve analysis, varying size of the patient populations, different mathematical methods for the calculation of reference ranges, variations in the application of the Doppler technologies, varying observation intervals.

The DU reference curves for the MCA described in this paper can be used in the clinical and scientific assessment of fetal hypoxemic, anemic disorders and intrauterine growth restriction [33], because these processes are identified by demonstration of low-impedance Doppler waveforms of the MCA [14].

Conclusions

Our nomograms of MCA RI, PI, S/D ratio, PSV and FHR from 20th to 40th week is characterized by a typical parabolic pattern both for the RI, PI and S/D ratio of the MCA, with maximum values at 26th–31st weeks of gestation and simple linear increasing pattern for PSV with maximum values at 38th–40th weeks of gestation. There is not significant difference
between our results and which reported by other authors in other regional between different populations (from East of Asia to West of Europe and America).

Abbreviations

DU – Doppler ultrasonography
MCA – Middle cerebral artery
RI – Resistive index
PI – Pulsatility index
S/D ratio – Systolic to Diastolic ratio
PSV – Peak systolic velocity
IUGR – Pulsatility index
SGA – Small for gestational age
BPD – Biparietal diameter

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

KT conceived the study, and carried out the Doppler ultrasound.
NN participated in the design of the study, performed the statistical analysis, drafted the manuscript and revised of the manuscript.
FGS performed Doppler ultrasonographic evaluation.
SV participated in the study design, coordination and patients follow up.
MT carried out clinical evaluation of pregnant women, recruiting them according to inclusion criteria and controlling newborns for excluding criteria.
All authors read and approved the final manuscript.
Acknowledgements

Professor Saeed Rad is thanked for revising the written English and his helpful comments. Also we are most grateful to the women participating in this study.

References

35. Rujiwetpongstorn J, Phupong V: Doppler waveform indices of the Middle Cerebral Artery of normal fetuses in the first half of pregnancy in the Thai population. *Arch Gynecol Obstet* 2007, 276: 351-4

Figures

Figure 1 - Individual measurements and calculated reference ranges for the resistive index (RI) in the MCA.

The standard boundaries include 90% of the normal patient population (Cubic R square = 0.386, P=0.000).

Figure 2 - Individual measurements and calculated reference ranges for the pulsatility index (PI) in the MCA.

The standard boundaries include 90% of the normal patient population (Cubic R square = 0.340, P=0.000).

Figure 3 - Individual measurements and calculated reference ranges for the systolic to diastolic ratio (S/D ratio) in the MCA.

The standard boundaries include 90% of the normal patient population (Cubic R square = 0.334, P=0.000).

Figure 4 - Individual measurements and calculated reference ranges for the peak systolic velocity (PSV) in the MCA.

The standard boundaries include 90% of the normal patient population (Cubic R square = 0.535, P=0.000).
Figure 5 - Individual measurements and calculated reference ranges for the fetal heart rate (FHR) in the umbilical artery.

The standard boundaries include 90% of the normal patient population (Cubic R square = 0.218, P=0.000).

Tables

Table 1 - Means and standard deviations of demographic and Doppler ultrasonographic findings in study population.

Table 2 - 5, 50 and 95 percentiles values for Doppler waveforms indices according to gestational age.
<table>
<thead>
<tr>
<th>Gestational age</th>
<th>Number of patients</th>
<th>Age of patients</th>
<th>Heart rate of fetus</th>
<th>Patients gravidity</th>
<th>RI</th>
<th>PI</th>
<th>PSV</th>
<th>S/D ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>41</td>
<td>23.25±3.41</td>
<td>151.69±5.88</td>
<td>1.31±0.6</td>
<td>0.76±0.04</td>
<td>1.72±0.29</td>
<td>20±12.23</td>
<td>5.34±1.55</td>
</tr>
<tr>
<td>21</td>
<td>48</td>
<td>27.38±6.34</td>
<td>149.63±5.72</td>
<td>1.79±0.88</td>
<td>0.77±0.06</td>
<td>1.79±0.26</td>
<td>23.15±12.69</td>
<td>5.81±1.9</td>
</tr>
<tr>
<td>22</td>
<td>43</td>
<td>26.38±6.37</td>
<td>149.77±7.39</td>
<td>1.69±0.85</td>
<td>0.76±0.05</td>
<td>1.82±0.28</td>
<td>23.77±11.69</td>
<td>5.91±1.79</td>
</tr>
<tr>
<td>23</td>
<td>54</td>
<td>26.74±6.7</td>
<td>144.48±8.04</td>
<td>1.81±1.03</td>
<td>0.78±0.04</td>
<td>1.94±0.28</td>
<td>22.72±11.02</td>
<td>6.31±1.97</td>
</tr>
<tr>
<td>24</td>
<td>45</td>
<td>27.36±5.95</td>
<td>146.43±6.92</td>
<td>2±1.35</td>
<td>0.81±0.05</td>
<td>1.94±0.43</td>
<td>27.92±11.38</td>
<td>6.21±1.61</td>
</tr>
<tr>
<td>25</td>
<td>52</td>
<td>25.23±5.21</td>
<td>148.54±7</td>
<td>1.81±0.98</td>
<td>0.81±0.05</td>
<td>1.9±0.36</td>
<td>27.14±9.2</td>
<td>6.38±1.59</td>
</tr>
<tr>
<td>26</td>
<td>44</td>
<td>27.79±4.51</td>
<td>142±7.4</td>
<td>1.74±0.8</td>
<td>0.82±0.05</td>
<td>1.95±0.39</td>
<td>30.56±10.14</td>
<td>6.36±1.47</td>
</tr>
<tr>
<td>27</td>
<td>42</td>
<td>27.1±5.31</td>
<td>144.24±7.75</td>
<td>2.1±1.04</td>
<td>0.83±0.04</td>
<td>2.03±0.38</td>
<td>36.13±9.37</td>
<td>6.69±1.37</td>
</tr>
<tr>
<td>28</td>
<td>41</td>
<td>26.5±3.62</td>
<td>143.7±7.57</td>
<td>1.6±0.69</td>
<td>0.85±0.07</td>
<td>2.05±0.49</td>
<td>37.24±6.6</td>
<td>6.95±1.64</td>
</tr>
<tr>
<td>29</td>
<td>55</td>
<td>25.97±5.56</td>
<td>141.43±8.59</td>
<td>1.6±0.85</td>
<td>0.84±0.05</td>
<td>2.02±0.4</td>
<td>36.54±9.7</td>
<td>6.87±1.46</td>
</tr>
<tr>
<td>30</td>
<td>46</td>
<td>26.5±4.47</td>
<td>140.6±11.06</td>
<td>1.7±0.82</td>
<td>0.83±0.04</td>
<td>1.98±0.34</td>
<td>46.42±11.16</td>
<td>7.13±1.35</td>
</tr>
<tr>
<td>31</td>
<td>50</td>
<td>27.53±7.7</td>
<td>138.77±10.67</td>
<td>1.57±0.77</td>
<td>0.82±0.04</td>
<td>1.97±0.35</td>
<td>41.24±10.14</td>
<td>6.6±1.66</td>
</tr>
<tr>
<td>32</td>
<td>46</td>
<td>27.29±5.97</td>
<td>140.76±8.28</td>
<td>2.06±0.82</td>
<td>0.82±0.07</td>
<td>1.92±0.33</td>
<td>49.28±9.77</td>
<td>7.09±2.21</td>
</tr>
<tr>
<td>33</td>
<td>47</td>
<td>27.3±4.78</td>
<td>138.39±8.78</td>
<td>1.52±0.73</td>
<td>0.79±0.06</td>
<td>1.76±0.3</td>
<td>47.3±10.73</td>
<td>5.84±2.00</td>
</tr>
<tr>
<td>34</td>
<td>42</td>
<td>27.05±6.02</td>
<td>138.67±9.91</td>
<td>1.81±0.98</td>
<td>0.79±0.04</td>
<td>1.79±0.28</td>
<td>57.1±9.29</td>
<td>5.1±1.18</td>
</tr>
<tr>
<td>35</td>
<td>49</td>
<td>29.21±4.65</td>
<td>136.37±10.13</td>
<td>2.26±1.36</td>
<td>0.85±0.05</td>
<td>1.75±0.33</td>
<td>52.06±9.61</td>
<td>5.33±1.84</td>
</tr>
<tr>
<td>36</td>
<td>48</td>
<td>27.92±5.62</td>
<td>139.88±9.52</td>
<td>2.33±1.09</td>
<td>0.75±0.05</td>
<td>1.54±0.26</td>
<td>56.65±12.2</td>
<td>4.31±1.15</td>
</tr>
<tr>
<td>37</td>
<td>43</td>
<td>27.94±5.05</td>
<td>137±9.66</td>
<td>1.63±0.88</td>
<td>0.73±0.07</td>
<td>1.43±0.31</td>
<td>53.93±16.34</td>
<td>4.12±1.31</td>
</tr>
<tr>
<td>38</td>
<td>51</td>
<td>25.29±5.65</td>
<td>134.71±7.76</td>
<td>1.5±0.8</td>
<td>0.68±0.06</td>
<td>1.25±0.21</td>
<td>56.97±15.91</td>
<td>3.22±0.67</td>
</tr>
<tr>
<td>39</td>
<td>45</td>
<td>28.33±5.66</td>
<td>136.33±9.3</td>
<td>2.27±1.43</td>
<td>0.68±0.05</td>
<td>1.23±0.15</td>
<td>60.85±18.96</td>
<td>3.22±0.46</td>
</tr>
<tr>
<td>40</td>
<td>46</td>
<td>26.50±2.33</td>
<td>136.50±10.19</td>
<td>1.63±0.51</td>
<td>0.67±0.04</td>
<td>1.23±0.16</td>
<td>54.42±23.48</td>
<td>3.16±0.44</td>
</tr>
</tbody>
</table>
Table 2. 5, 50 and 95 percentiles values for Doppler waveforms indices according to gestational age.

<table>
<thead>
<tr>
<th>Gestational age (Week)</th>
<th>RI 5</th>
<th>RI 50</th>
<th>RI 95</th>
<th>PI 5</th>
<th>PI 50</th>
<th>PI 95</th>
<th>S/D ratio 5</th>
<th>S/D ratio 50</th>
<th>S/D ratio 95</th>
<th>PSV 5</th>
<th>PSV 50</th>
<th>PSV 95</th>
<th>FHR 5</th>
<th>FHR 50</th>
<th>FHR 95</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>.69</td>
<td>.75</td>
<td>.86</td>
<td>1.28</td>
<td>1.71</td>
<td>2.19</td>
<td>3.56</td>
<td>4.5</td>
<td>8.5</td>
<td>4.8</td>
<td>21.5</td>
<td>44</td>
<td>139</td>
<td>153.5</td>
<td>159</td>
</tr>
<tr>
<td>21</td>
<td>.65</td>
<td>.78</td>
<td>.86</td>
<td>1.37</td>
<td>1.82</td>
<td>2.27</td>
<td>3.28</td>
<td>5.51</td>
<td>9.6</td>
<td>4.0</td>
<td>22</td>
<td>42</td>
<td>140.25</td>
<td>148.5</td>
<td>159</td>
</tr>
<tr>
<td>22</td>
<td>.64</td>
<td>.75</td>
<td>.85</td>
<td>1.22</td>
<td>1.8</td>
<td>2.31</td>
<td>3.5</td>
<td>5.3</td>
<td>9.5</td>
<td>9</td>
<td>22</td>
<td>43.7</td>
<td>135</td>
<td>150</td>
<td>157</td>
</tr>
<tr>
<td>23</td>
<td>.69</td>
<td>.78</td>
<td>.85</td>
<td>1.32</td>
<td>2</td>
<td>2.36</td>
<td>3.55</td>
<td>5.5</td>
<td>9.77</td>
<td>5.25</td>
<td>26</td>
<td>37.5</td>
<td>133.25</td>
<td>145</td>
<td>159</td>
</tr>
<tr>
<td>24</td>
<td>.73</td>
<td>.81</td>
<td>.93</td>
<td>1.33</td>
<td>1.91</td>
<td>2.75</td>
<td>4.05</td>
<td>5.65</td>
<td>8.85</td>
<td>16</td>
<td>26</td>
<td>55</td>
<td>136</td>
<td>144.5</td>
<td>158</td>
</tr>
<tr>
<td>25</td>
<td>.7</td>
<td>.81</td>
<td>.88</td>
<td>1.43</td>
<td>1.75</td>
<td>2.6</td>
<td>4.51</td>
<td>5.85</td>
<td>9.83</td>
<td>13.23</td>
<td>28</td>
<td>44.7</td>
<td>137</td>
<td>147.5</td>
<td>157.7</td>
</tr>
<tr>
<td>26</td>
<td>.74</td>
<td>.81</td>
<td>.93</td>
<td>1.32</td>
<td>1.91</td>
<td>2.65</td>
<td>4.4</td>
<td>6</td>
<td>8.9</td>
<td>16</td>
<td>29</td>
<td>55</td>
<td>133</td>
<td>139</td>
<td>158</td>
</tr>
<tr>
<td>27</td>
<td>.76</td>
<td>.82</td>
<td>.92</td>
<td>1.28</td>
<td>2.04</td>
<td>2.6</td>
<td>4.6</td>
<td>6.9</td>
<td>8.6</td>
<td>18.75</td>
<td>34</td>
<td>53.67</td>
<td>133.15</td>
<td>143</td>
<td>157</td>
</tr>
<tr>
<td>28</td>
<td>.75</td>
<td>.84</td>
<td>.96</td>
<td>1.4</td>
<td>2.05</td>
<td>2.7</td>
<td>4.65</td>
<td>6.8</td>
<td>9.15</td>
<td>31</td>
<td>35.5</td>
<td>51</td>
<td>130</td>
<td>145</td>
<td>153</td>
</tr>
<tr>
<td>29</td>
<td>.76</td>
<td>.83</td>
<td>.96</td>
<td>1.4</td>
<td>2.1</td>
<td>2.7</td>
<td>4.95</td>
<td>6.15</td>
<td>9.35</td>
<td>20</td>
<td>34.35</td>
<td>56.5</td>
<td>124</td>
<td>140</td>
<td>157</td>
</tr>
<tr>
<td>30</td>
<td>.78</td>
<td>.84</td>
<td>.89</td>
<td>1.52</td>
<td>1.97</td>
<td>2.49</td>
<td>5.1</td>
<td>7.25</td>
<td>9.5</td>
<td>29</td>
<td>47.35</td>
<td>63.8</td>
<td>122</td>
<td>142.5</td>
<td>156</td>
</tr>
<tr>
<td>31</td>
<td>.75</td>
<td>.82</td>
<td>.88</td>
<td>1.5</td>
<td>1.96</td>
<td>2.5</td>
<td>4.6</td>
<td>6</td>
<td>9.2</td>
<td>25</td>
<td>41.85</td>
<td>64</td>
<td>121</td>
<td>140</td>
<td>155</td>
</tr>
<tr>
<td>32</td>
<td>.6</td>
<td>.83</td>
<td>.92</td>
<td>1.1</td>
<td>1.9</td>
<td>2.34</td>
<td>2.5</td>
<td>7.8</td>
<td>10</td>
<td>31</td>
<td>49.1</td>
<td>67.4</td>
<td>127</td>
<td>141</td>
<td>154</td>
</tr>
<tr>
<td>33</td>
<td>.66</td>
<td>.8</td>
<td>.89</td>
<td>1.08</td>
<td>1.78</td>
<td>2.21</td>
<td>2.95</td>
<td>5.5</td>
<td>9.51</td>
<td>26.75</td>
<td>46.4</td>
<td>65.16</td>
<td>125.7</td>
<td>140</td>
<td>152.3</td>
</tr>
<tr>
<td>34</td>
<td>.74</td>
<td>.8</td>
<td>.86</td>
<td>1.4</td>
<td>1.73</td>
<td>2.54</td>
<td>3.63</td>
<td>5.1</td>
<td>7.18</td>
<td>38.18</td>
<td>58</td>
<td>70</td>
<td>123.45</td>
<td>142</td>
<td>150.85</td>
</tr>
<tr>
<td>35</td>
<td>.68</td>
<td>.81</td>
<td>.91</td>
<td>1.13</td>
<td>1.74</td>
<td>2.4</td>
<td>3.15</td>
<td>4.72</td>
<td>11</td>
<td>37.5</td>
<td>52</td>
<td>79.5</td>
<td>123</td>
<td>136</td>
<td>158</td>
</tr>
<tr>
<td>36</td>
<td>.65</td>
<td>.77</td>
<td>.88</td>
<td>1.16</td>
<td>1.58</td>
<td>2.05</td>
<td>2.81</td>
<td>4</td>
<td>7.22</td>
<td>33.9</td>
<td>61.5</td>
<td>70.55</td>
<td>120</td>
<td>141</td>
<td>153.1</td>
</tr>
<tr>
<td>37</td>
<td>.63</td>
<td>.73</td>
<td>.89</td>
<td>1.04</td>
<td>1.37</td>
<td>2.02</td>
<td>2.7</td>
<td>3.75</td>
<td>7</td>
<td>30</td>
<td>50</td>
<td>89</td>
<td>120</td>
<td>142</td>
<td>151</td>
</tr>
<tr>
<td>38</td>
<td>.56</td>
<td>.68</td>
<td>.79</td>
<td>.86</td>
<td>1.26</td>
<td>1.7</td>
<td>2.27</td>
<td>3</td>
<td>4.8</td>
<td>38.9</td>
<td>54</td>
<td>90</td>
<td>127</td>
<td>131</td>
<td>148</td>
</tr>
<tr>
<td>39</td>
<td>.52</td>
<td>.69</td>
<td>.74</td>
<td>.76</td>
<td>1.27</td>
<td>1.4</td>
<td>2.1</td>
<td>3.23</td>
<td>3.9</td>
<td>36</td>
<td>53</td>
<td>87.2</td>
<td>121</td>
<td>138</td>
<td>150</td>
</tr>
<tr>
<td>40</td>
<td>.64</td>
<td>.66</td>
<td>.73</td>
<td>.99</td>
<td>1.2</td>
<td>1.62</td>
<td>2.7</td>
<td>2.99</td>
<td>3.64</td>
<td>31.2</td>
<td>43</td>
<td>84.35</td>
<td>123</td>
<td>138</td>
<td>152.8</td>
</tr>
</tbody>
</table>
Figure 4

The image displays a scatter plot with the x-axis labeled as "Gestation age" ranging from 19 to 41. The y-axis is labeled "PSV" ranging from 0 to 100. The plot includes several curves and data points indicating a cubic relationship with an R-Square value of 0.543.