Effectiveness of Cardiovascular Prevention Programmes in Primary Care (PreCardio): a randomised clinical trial

Neree Claes MD PhD, professor, Hasselt University, Faculty of Medicine, Agoralaan Building D, 3590 Diepenbeek, Belgium; neree.claes@uhasselt.be

Nele Jacobs MSc PhD, Hasselt University, Faculty of Medicine, Agoralaan Building D, 3590 Diepenbeek, Belgium; nele.jacobs@uhasselt.be

Els Clays MSc PhD, Ghent University, Department of Public Health, De Pintelaan 185, block A, 9000 Ghent, Belgium, els.clays@ugent.be

Ward Schrooten MD PhD, Hasselt University, Faculty of Medicine, Agoralaan Building D, 3590 Diepenbeek, Belgium; ward.schrooten@uhasselt.be

Ilse De Bourdeaudhuij MSc PhD, professor, Ghent University, Department of Movement and Sports Sciences, Watersportlaan 2, 9000 Ghent, Belgium; ilse.debourdeaudhuij@ugent.be

Author for correspondence:
Prof Dr Neree Claes
Hasselt University, Faculty of Medicine
Agoralaan Building D
3590 Diepenbeek
Belgium
Telephone number: 003211268507
Fax number: 003211745610
Email address: neree.claes@uhasselt.be
ABSTRACT

Background

Cardiovascular disease is a major cause of mortality and morbidity and its prevalence is set to increase. While the benefits of medical and lifestyle interventions are established, the effectiveness of interventions which seek to improve the way preventive care is delivered in primary care is less so. The aim was to study and to compare the effectiveness of 2 intervention programmes for reducing cardiovascular risk factors within primary care.

Methods

A randomised controlled trial was conducted in Belgium between 2007-2010 with 314 participants allocated to a medical (MP) or a medical + lifestyle (MLP) program. The MP consisted of medical assessments (screening and follow-up) and the MLP added a tailored lifestyle change programme (web-based and individual coaching) to the MP. Primary outcomes were total cholesterol, blood pressure, and body mass index (BMI). The secondary outcomes were smoking status, fitness-score, and total cardiovascular risk.

Results

The mean age was 41 years, 95 (32%) participants were female, 7 had a personal cardiovascular event in their medical history and 3 had diabetes. There were no significant differences found between MP and MLP in primary or secondary outcomes. In both study conditions decreases of cholesterol, systolic blood pressure, and diastolic blood pressure were found. Unfavourable increases were found for BMI (p<.05). A significant decrease of the overall cardiovascular risk was reported (p<.001).

Conclusions

Both interventions are effective in reducing cardiovascular risk. In our population the combined medical and lifestyle programme was not superior to the medical programme.

Key words: cardiovascular diseases, prevention, trials, lifestyle
INTRODUCTION

Cardiovascular disease (CVD) is a major cause of mortality and morbidity in industrialized countries and is accountable for high societal costs [1]. Because of the severe disease burden, preventive actions are perceived as a major public health priority. These actions are important, knowing that the contribution of preventable risk factors is 70-76% for the total number of CVD [2].

In order to lower CVD, preventive programmes should focus both on medical (cholesterol, blood pressure, glycaemia) and lifestyle risk factors (smoking, low levels of physical activity, and unhealthy diet) [2]. Scientific evidence suggests that the latter programmes could have favourable effects on cardiovascular (CV) risk factors [3, 4]. However the implementation of such a programme is rarely studied within general practice [5]. The disappointing follow-up of patient with CV risk factors in routine care, recently found in the Euroaspiré survey, stressed out the urge to study the implementation of CV prevention programmes within general practice. The implementation of different prevention models and their barriers has to be studied for its quality improvement and cost-effectiveness [6]. Buckley listed following quality improving factors for management models within general practice: recall of patients, systematically monitoring of risk factors and medication, patient and general practitioner education. Nevertheless, these quality improving factors have not yet been studied in a management prevention model within primary care.

The aim was to study and compare the effectiveness of two CV prevention programmes for reducing cardiovascular risk factors within primary care. Both programmes are based on the European guidelines for CV prevention and on Buckley’s quality improving factors.

METHODS

Participants

PreCardio was a randomised clinical trial with a follow-up of 3 years [7]. The inclusion criteria for participants were age between 25–75 years and being insured by the ‘De Onderlinge Ziekenkas’ and living in the province of Limburg. All of the insured were self-employed lawyers. All study participants signed an informed consent and had access to the internet. No other eligibility criteria were used. Study recruitment took place between February and April 2007. Potential participants (n=737) were invited through an active recruitment strategy within the Bar: first a letter from the study secretary and secondly an invitation from the head of the lawyers. Three-hundred fourteen adults signed an informed consent to participate (42%). 106 were randomised to the MP and
208 to the MLP. However, 6 participants of the MP and 13 of the MLP chose not to start the study despite prior consent, resulting in 295 participants at the start of the study. The participant flow chart is shown in figure 1. The study complied with the Declaration of Helsinki and approval was obtained from the ethics committee of Hasselt University and the study was registered (ISRCTN23940498).

Interventions

Participants in both prevention programmes (MP + MLP) were invited for a baseline multidisciplinary prevention consultation at Hasselt University, consisting of a medical screening by a general practitioner (GP) (anamnesis, blood pressure, cholesterolama, glycaemia), a dietician consult (weight, length and fat percentage), an assessment of physical fitness (step test) and a consult by a psychologist [7]. Patients were classified in the pre-contemplation, contemplation, preparation, action or maintenance stage [8]. After this screening all the participants received a printed profile with their individual risk factors and total cardiovascular risk [9]. This printed profile also contained advices to improve lifestyle factors based on all the results of the assessment. Participants with an aberrant medical risk factor (high blood pressure, hypercholesterolaemia or -glycaemia) and a high total risk were referred to their GP for immediate follow-up. Participants with a medium risk were advised to consult their GP every year, those with low risk, once every three year. The GPs of the participants were educated during a 4 hours training and had access to an online education tool for CVD prevention. An electronic risk calculator was developed and integrated in the electronic medical file of the GPs (n=240) [10]. Supplementary a copy of the participants printed profile was sent to their GP. The multidisciplinary screening consultations were organised yearly at the University during the study. Participants of the MLP received additional interventions based on their personal scores for behavioural (physical activity, nutrition, smoking) variables [11-13]. Participants received access to a personalised website and one-on-one coaching. The personalised website included tailored advices based on the variables mentioned above. The one-on-one coaching targeted one or multiple behaviours based on the preferences of the individual. The coaching was delivered by a health psychologist in collaboration with a general practitioner, a physiotherapist, a cardiologist and assisted by students in sports or diet counselling. The coaching could be delivered by regular mail, e-mail, telephone, face-to-face (individual or group). Participants could freely determine the intensity and delivery mode of the MLP [14].

Power calculation

A power calculation was performed to determine the number of study participants needed to detect a significant effect between the both programmes with a power of 80%. The sample calculation was based on the population
standard deviation of the primary outcome measure. For our study this was the systolic blood pressure (SBP). Kelly et al found a mean SBP of 125 mmHg (SD 14) [15]. The sample size calculation was performed with Nquery Advisor 4.0®. A two group t-test with a 0.05 two-sided significance level would have 80% power to detect the difference between the MP mean of 125 mmHg and the MLP mean of 120 mmHg. Assuming a common standard deviation of 14 mmHg, a total sample size of 282, 93 in the MP and 186 in the MLP would be sufficient.

Outcome measures

The aim of this randomised trial was to examine the effectiveness of two cardiovascular prevention programmes in reducing cardiovascular risk factors within primary care with 3 years of intervention. The primary outcomes were systolic and diastolic blood pressure, total cholesterol, weight, and body mass index. The secondary outcomes were smoking, physical fitness, stages of behaviour change, medication use, and total cardiovascular risk. **Blood pressure** was measured with an Omron X6®. **Total cholesterol** was measured using capillary blood with an Accutrend Plus system®, **weight and body fat** was measured with a Tanita TBF-300A Body Composition Analyzer®. Body mass index (BMI) is body weight (kg) divided by the square of the height (m). **Smoking** was questioned using a short questionnaire from a national health questionnaire [16]. **Physical fitness** was tested with a step test, stepping up and down a platform (90 beats steps per minute) during 5 minutes [17]. Heart rate was recorded 1, 2 and 3 minutes after completing the step test in sitting position. Physical fitness level was calculated with the formula: 30.000 divided by 2 times the sum of the three recuperation hart rates. This continuous variable is transformed to a categorical variable that represents the fitness category as follows: < 55 (low); 55-64.9 (low average); 65-79.9 (high average); 80-89.9 (good); and > 90 (excellent). **Total cardiovascular risk** was determined using the score table, scoring participants with a risk ≥4% to die of an cardiovascular event as a high risk, 2-4% as medium risk and <2% as low risk [9]. The **stages of behaviour change** were measured using a single table for assessing physical activity, diet and quitting smoking [7]. To evaluate the evolution in the stages of behaviour change, different categorical variables were determined, namely: two or more stages down, one stage down, no change, one stage up, two or more stages up.

Statistical analyses

Repeated measures ANOVAs were used to examine time and time x study condition interaction effects. A p-level lower than 0.05 was considered to be significant. Evolutions of stages of change in the two study conditions were compared using Chi square analyses. All analyses were performed with SPSS 16.0.
RESULTS

Participants

Overall 314 participants signed in to participate in the study, 295 of these group underwent the multidisciplinary prevention consultation and were included. The mean age was 40.73 years (SD 10.54), 95 (32%) participants were female, 7 had a personal cardiovascular event in their personal history and 3 had diabetes (table 1). There were no significant differences in baseline characteristics between MP and MLP except for smoking (21% in the MLP versus 11% in the MP arm, p<0.05). Forty participants (13%) dropped out of the study prior to reaching the endpoint of the study. The main reason to stop was lack of time (n=20); only interest in MP (n=7), stopped as lawyer (n=7) and disappointment in the study tools (n=6). No one of the drop-outs had had a cardiovascular event. Contact was lost with 10 participants. There was no significant difference in drop-outs between the two study conditions. Participants who dropped out were significantly younger (p<0.05), female (p<0.05), without a family history of cardiovascular events (p<0.05), having a significant lower BMI (p<0.05) and lower daily unsaturated fat intake (p<0.05). In total 255 participants (87%) completed the 3-year study.

Effectiveness of the Cardiovascular Prevention Programmes

Among the study completers, a decrease in total cholesterol (p<0.001), systolic blood pressure (p<0.01), and diastolic blood pressure (p<0.001) in both study conditions was found (table 2). There was a significant increase in BMI (p<0.01). Overall, there was a decrease in the fitness-score. Overall, the average fitness category was low average at the start of the study, and low at the end of the study. Most importantly, there was a significant decrease of total cardiovascular risk (p<0.001). During the study period one participant in the MLP had a cardiovascular event. And one patient was diagnosed with diabetes in the MLP. There were no significant differences found between MP and MLP in blood pressure, cholesterolemia, BMI and Physical fitness (table 2).

At baseline, 48 participants (19%) were smoker compared to 29 (11%) at the study endpoint. The proportion of smoking cessation in the total sample was 44%. The proportion of smoking cessation in the MP (6/10 or 60%) versus the MLP (15/38 or 39.5%) was not statistically different.

Medication use

A categorical variable was used for medication use with 4 possibilities: no use of medication, medication use decreased, medication use stayed the same, and medication use increased. Two hundred thirty seven patients used no medication. In 4 participants medication use decreased, in 16 participants the medication use stayed the same, and in 38 cases medication use increased. An interaction effect was found for systolic blood pressure (p<0.001) and for diastolic blood pressure (p<0.001) indicating that these decreases might be due to medication
adherence. At the end of the study, in total, 33 patients took antihypertensive medication, 18 patients received anti-platelet medication, 29 used lipid lowering medication, and 4 patients used diabetes medication.

Evolution of the stages of behaviour change

No significant differences between the MP and MLP in evolution of the stages of behaviour change at the endpoint were found. In figure 2 the evolution of the stage of behaviour change is given for the three behaviours: smoking cessation, diet and physical activity. For the total sample, the only difference from start to endpoint was found for the categories of change for smoking, not for physical activity or diet.

DISCUSSION

In our population the combined medical and lifestyle program (MLP) was not superior to the medical programme (MP). Both intervention programmes were effective in reducing medical cardiovascular risk factors and the overall CVD risk. This is an important finding given the achievements on a relatively short time period (3 years).

The MLP was not superior to the MP with regard to the medical risk factors and also with regard to the stages of behaviour change. These findings are in line with several recent reviews suggesting that multiple risk factor interventions including coaching methods produce only marginal results when implemented in general population samples [6]. So our results suggest that an intensive MLP is of modest value within a highly educated population sample, an organised MP within primary care can be sufficient to evoke improvements in risk factors. Medical screening and feedback on therapeutic goals within primary care can already lead to improvements with regard to risk factors such as cholesterol and blood pressure for a highly educated sample.

The most important strength of this study was the use of a randomised design. The second strength is the inclusion of a mixed population sample in terms of overall CVD risk (high, medium and low CVD risk). However, the study has several limitations. A first limitation is the participants’ exposure to the lifestyle programme. Participants were free to choose the self-determined intervention intensity and the delivery mode of the MLP. This freedom was theory-inspired but led to some participants under using the programme which potentially limited the effect of the MLP. This might explain the lack of effect on the stages of behaviour change. Literature shows that a higher dose increases intervention effectiveness [14]. Secondly, the participants were highly educated volunteers, limiting the generalisability of our findings. Given their high motivation to take part in a cardiovascular prevention programme and their organisational and financial abilities to seek support elsewhere, it cannot be excluded that people allocated to the MP sought help to change their behaviour beyond the study context after receiving a printed profile with their risk factors.
Studies which seek to improve the way preventive care is delivered in primary care are rather scarce and diverse (different study design, population and intervention(dose)) [6]. A study with a comparable population with regard to cardiovascular risk is ‘Hartslag Limburg’. It was a community based lifestyle programme to reduce cardiovascular risk factors in a cohort of 5 years [18]. All lifestyle factors improved. ‘Impala’, a nurse-led intervention study in primary care, didn’t benefit over the usual care mainly due to a study nurse detecting risk factors in both study conditions [19]. In ‘Euro action’ a nurse-coordinated, multidisciplinary, family based, ambulatory programme was studied [20]. In this programme healthier lifestyle scores and improved risk factors were obtained for patients with coronary heart disease and high risk patients in comparison to those followed by usual care. A comparable design study as the PreCardio-trial is the Swedish ‘Björknäs study’ [21]. Our findings are however not in line with their results: a significant difference comparing usual care and usual care plus a lifestyle programme. The superiority of their MLP could be explained by the high intensity of their lifestyle programme (weekly personal meetings by default, no self-selection) and patient selection (high risk). And most important the MP of our study was not comparable with usual care: it was a new multidisciplinary management model.

In most countries there is a need for a management model to organise prevention within usual care in collaboration with the governmental and academic actors. In such a model different aspects have to be discussed. The first aspect is the screening. Who will be screened? A possibility could be to invite all adults between 40-75 years. It could be expected that in such a programme about half of the patients without a history of cardiovascular disease will receive at least one prescription, diet or health advice [22]. To perform the screening more cost-efficient, routine administrative data out of the electronic medical file could be used to invite people after a cardiovascular risk stratification [23]. In this case only the medium to high risk patient will be invited. Who will perform the screening? This could be a multidisciplinary screening consultation with a GP as prevention coordinator. The prevention coordinator sends the results to the treating GP for follow-up. In case of a non multidisciplinary screening, the GPs will need (supporting) tools: administrative support, knowledge, sufficient time with an adequate remuneration, an electronic risk calculator, point of care testing for cholesterol-glycaemia, a weight balance and questionnaires on lifestyle. These tools are necessary, it is already proven that GPs don’t always take time to give lifestyle advice or treat risk factors sufficiently. The next aspect is the follow-up. Who is going to invite the patient for follow-up: high risk every 4 months, medium risk yearly and low risk every 3 years? The latter could be the task of the prevention coordinator in collaboration with the GP. Who will perform the follow-up? The follow-up will be performed by the treating GP (in collaboration with the
cardiologist in case of secondary prevention). Also in the follow-up GPs will need the same (supporting) tools as mentioned above. This is in line with the quality improving factors of Buckley for management models in primary care (e.g., recall of patients and systematically monitoring of risk factors) [6].

This study showed that it is possible to implement a multidisciplinary management model in routine clinical practice with the incorporation of a medical prevention coordinator to perform the screening and to coordination. The follow-up can be done by the treating GP. This management model will improve patient follow-up regarding their risk factors.

COMPETING INTERESTS
The author(s) declare that they have no competing interests.

AUTHORS’ CONTRIBUTIONS
Neree Claes has made the main contributions to the conception, design, acquisition of data, or analysis and interpretation of data, and in drafting and revising the manuscript. Nele Jacobs has made substantial contributions to the design, acquisition of data, analysis, interpretation and writing of the manuscript. Els Clays was involved in drafting and revising the manuscript. Ward Schrooten was involved in the analysis of the data. Ilse De Bourdeaudhuij was involved in the design, and in drafting and revising the manuscript.

ACKNOWLEDGEMENTS
This study was funded by the Chair “Leerstoel De Onderlinge Ziekenkas - Preventie” established at Hasselt University. All authors declare to have no competing interests.

REFERENCES

FIGURE LEGENDS

Figure 1. Participant flow chart

Figure 2. Stage of behaviour change for the 3 behaviours from baseline to follow-up
Figure 1: Participant flow chart

Enrolment
Feb 07-Apr 07

Allocation

Randomised (n= 314)

Assessed for eligibility [n= 737]

Exclusion: no response to the invitations for participation (n= 423)

Allocated to Medical Programme (MP) and received invitation for baseline screening (n= 106)

Exclusion: no medical screening (n= 6)

Allocated to Medical + Lifestyle Programme (MLP) and received invitation for baseline screening (n= 208)

Exclusion: no medical screening (n=13)

Medical Programme (n= 100)

5 multidisciplinary prevention consultations, screening and follow-up depending their cardiovascular risk: high risk: every 4 months; medium risk: every year; low risk: once every three year
5 printed profile
5 3 questionnaires on lifestyle without advice or coaching

Exclusion: discontinuation of the study (n=18)

Medical + Lifestyle programme (n=195)

5 multidisciplinary prevention consultations, screening and follow-up depending their cardiovascular risk: high risk: every 4 months; medium risk: every year; low risk: once every three year
5 printed profile
5 3 questionnaires on lifestyle with tailored feedback after every questionnaire; a personalized website; multidisciplinary coaching

36 months

Medical assessment (n=82)

Medical assessment (n=173)
Figure 2: Stage of behaviour change for the 3 behaviours from baseline to follow-up
Additional files provided with this submission:

Additional file 1: table 1_29112012.doc, 34K
http://www.biomedcentral.com/imedia/1862928439859539/supp1.doc
Additional file 2: table 2_29112012.doc, 32K
http://www.biomedcentral.com/imedia/1712290705859539/supp2.doc