Peripheral nervous system manifestations in Fabry disease – Early diagnosis of peripheral nervous system involvement in Fabry disease and treatment of neuropathic pain: the report of an expert panel

Alessandro P Burlina¹, Katherine B Sims², Juan M Politei³, Gary J Bennett⁴, Ralf Baron⁵, Claudia Sommer⁶, Anette Torvin Møller⁷, Max J Hilz⁸

Author details

¹ Neurological Unit, San Bassiano Hospital, Bassano del Grappa, Italy; alessandro.burlina@aslbassano.it

² Center for Human Genetic Research and Neurology Department, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; SIMS@HELIX.MGH.HARVARD.EDU sims@helix.mgh.harvard.edu

³ Neuromuscular Disorders and Neuropathic Pain Section, Neurology Department, Juan A. Fernández Hospital, Buenos Aires, Argentina; i.politei@hotmail.com i.politei@intramed.net

⁴ Department of Anesthesia, Faculty of Dentistry, and the Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec, Canada; gary.bennett@mcgill.ca

⁵ Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany; r.baron@neurologie.uni-kiel.de
Running title: Peripheral nervous system manifestations in Fabry disease

Correspondence: Alessandro P. Burlina, MD, PhD, Neurological Unit, San Bassano Hospital, Via dei Lotti, 40, 36061 Bassano del Grappa, Italy.
Tel: +39-0424 888421; Fax: +39-0424 888456; E-mail: allesandro.burlina@aslbassano.it.

Word counts

Abstract: 275; Body of Text (Introduction through Conclusions): 3,905

Tables: 32

Figures: 4
Abstract

Background: Fabry disease is an inherited, progressive, life-threatening lysosomal storage metabolic disorder characterized by progressive lysosomal accumulation of lipids in a variety of cell types, including neural cells. Small, unmyelinated nerve fibers are particularly affected and small fiber peripheral neuropathy often clinically manifests at young age, generally manifests early in the course of this disease as peripheral pain can be chronic peripheral pain and/or with occur as provoked attacks of excruciating pain. are, and damage to small autonomic nerve fibers. Manifestations of dysfunction of small autonomic fibers may include, among others, impaired sweating, gastrointestinal dysmotility, and abnormal pain perception. Patients with Fabry disease often remain undiagnosed until severe complications involving the kidney, heart, peripheral nerves and/or brain have arisen.

Methods: An international expert panel convened with the goal to provide guidance to clinicians who may encounter unrecognized patients with Fabry disease on how to diagnose these patients early using simple diagnostic tests, and on monitoring of the progression of neurologic disability. A further aim was to offer recommendations to control neuropathic pain. The guidance is based on review of the relevant medical literature on the early features of this devastating disease, and is supported by personal experiences.

Results: We describe the neuropathy in Fabry disease, focusing on peripheral small fiber dysfunction – the hallmark of early neurologic involvement in this disorder. The clinical course of peripheral pain is summarized, and the importance of medical history-taking, including family history, is highlighted. A thorough physical examination (e.g.,
angiokeratoma, corneal opacities) and simple non-invasive sensory perception tests could provide clues to the diagnosis of Fabry disease. Reported early clinical benefits of Fabry disease-specific treatment with enzyme replacement therapy include reduction of neuropathic pain and adequate management of residual pain to a tolerable and functional level can substantially improve the quality of life for patients.

Conclusions: Fabry disease-specific treatment with enzyme replacement therapy and the therapeutic other options to decrease neuropathic pain to a tolerable and functional level have the potential to substantially improve the quality of life for patients.

Our recommendations can assist in diagnosing Fabry small fiber neuropathy early, and offer clinicians guidance in controlling peripheral pain. This is particularly important since management of pain in young patients with Fabry disease appears to be inadequate.

Key words: Diagnosis; Fabry Disease; Monitoring; Neuropathy; Pain; Treatment
Background

Fabry disease is a life-limiting genetic lysosomal storage disorder with distressing early clinical symptoms related to small fiber neuropathy [1-3]. The deficiency of lysosomal α-galactosidase A activity results in the progressive accumulation of globotriaosylceramide (GL-3) glycolipids in a variety of cell types vascular endothelial, neural, renal, cardiac, and other cells [4]. Recently, increased levels of globotriaosylshingosine (lyso Gb3), the deacylated form of globotriaosylceramide, in plasma of male Fabry patients have been reported. A cascade of overlapping pathologic events usually leads to multisystemic disease. First symptoms (see Table 1) typically arise in childhood or adolescence and include, among others, peripheral pain, angiokeratoma (Figures 1A,B), and cornea verticillata (Figure 2) [1-3]. Serious complications developing in adulthood include progressive renal insufficiency, cardiac complications (arrhythmia, hypertrophic cardiomyopathy), and/or cerebrovascular complications (e.g. early stroke), and have been reviewed elsewhere [5-9]. Although Fabry disease is transmitted in an X-linked fashion, females commonly manifest symptoms, presumably as a result of skewed X-chromosome inactivation [10, 11]. Their phenotypic presentations, however, are far more variable as compared to males [7, 10].

The first neurologic symptoms reflect damage to the small fibers of the peripheral and autonomic nervous systems. and results from the accumulation of storage products in nerves. Peripheral neuropathic pain in young patients with Fabry disease can manifest as chronic, burning pain and superimposed attacks of acute excruciating pain (described in more detail later), dysesthesias, thermal sensation deficits (primarily cold perception), and paresthesias (e.g., painless tingling) [12-14]. the vast majority of affected boys and
many girls report chronic burning pain in the extremities and superimposed attacks of acute excruciating pain. Symptoms related to autonomic nervous system dysfunction may include hypohidrosis, impaired pupillary constriction and saliva and tear production, gastrointestinal dysmotility (abdominal cramping pain, bloating, diarrhea, nausea), and sensory losses. Cornea verticillata (Figure 1), characteristic skin lesions (angiokeratoma, Figures 2A,B), hearing loss, and tinnitus are among the common early signs and symptoms (Table 1). Renal hyperfiltration as an early sign of loss of nephrons, (micro)albuminuria, and cardiac conduction abnormalities (P-R interval shortening) on the electrocardiogram may also be detected at young age.

The neuropathic pain impacts male and female patients during the prime of their lives and greatly impairs well-being. Cerebrovascular complications (e.g., early stroke) lead to considerable morbidity in adulthood. Together with progressive failure of functioning of the kidneys and/or heart (arrhythmia, hypertrophic cardiomyopathy), these complications contribute to the reduced life expectancy reported by registries of patients with Fabry disease.

Fabry disease is an X-linked recessive disorder and heterozygous girls and adult women commonly manifest symptoms, presumably as a result of skewed X-chromosome inactivation. Their phenotypic presentations, however, are far more variable as compared to males. The observed phenotypic variability may, in part, be due to the large genotypic diversity; to date, over 400 Fabry mutations have been identified. Fabry disease may be far more common than previously thought (i.e., 1 in 40,000 males, 1 in 20,000 females). Results from neonatal screening studies suggest a prevalence of a Fabry mutation as high as 1 in 1,250 newborn infants.
General guidelines for clinical management of patients with Fabry disease have been published. However, published guidance on the clinical evaluation of early stages of Fabry neuropathy, focusing on simple tools for the practitioner and on therapeutic intervention is scarce. Our proposed recommendations are based on the Proceedings of the First

The primary neuropathic insult in Fabry disease is presumably due to a combination of factors that are linked with accumulation of GL-3, and possibly with deposition of its deacylated form [15]. Accumulated GL-3, migrated from the plasma into neural cells or synthesized in situ, can interfere with the function of critical proteins, e.g., ion channels, thereby causing nerve injury and dysfunction [12]. GL-3 inclusions have been demonstrated in dermal vascular endothelial and smooth muscle cells, endothelial and perithelial cells of epineural and endoneural small blood vessels, perineural cells, myelinated and unmyelinated axons, and less often in Schwann cells [16-25]. The dorsal root ganglia have fenestrated blood vessels and appear particularly vulnerable for GL-3 accumulation (Figure 3) [26, 27]. Also in the central nervous system, GL-3 appears to accumulate in regions where the blood-brain barrier is more permeable (e.g., supraoptic, paraventricular and preoptic hypothalamus nuclei, dorsal nucleus of the vagus) [26]. Luminal encroachment and occlusion of the vasa nervorum of the peripheral nerves due to endothelial GL-3 storage, disturbed balance between vasodilatative and vasoconstrictive mechanisms, and thrombotic complications are factors that may contribute to ischemic neural damage [28, 29]. Also, GL-3 accumulation in skin cells may interfere with the function of intradermal sensory receptors.
Although still insufficiently understood, peripheral nerve injury may induce a variety of peripheral and central mechanisms, e.g., axonal sensory hyperexcitability, ectopic spontaneous firing, and central sensitization that have been described elsewhere [12, 13, 30, 31]. The extent of overlap of these mechanisms in the various stages of Fabry disease is uncertain.

An International Expert Panel on Fabry-Neuropathy in Fabry Disease convened held in Rome, Italy, on January 12th, 2009, in Rome, Italy. The Panel was composed of 8 experts (7 physicians/physician scientists, 1 scientist) in the area of Fabry disease and/or peripheral neuropathy from the US, Canada, South America, and Europe. The aim of the meeting (sponsored by Genzyme Corp.) was to develop guidance on the clinical evaluation of early stages of small fiber neuropathy in Fabry disease, focusing on simple diagnostic tools that can be quickly applied by the practitioner, and on treatment of the neuropathic pain. The recommendations are supported by a review of relevant medical literature published up to September 2010. Given the well manageable number of relevant publications related to Fabry neuropathy, no specific criteria for literature review were used. Our recommendations can assist in diagnosing Fabry small fiber neuropathy early, and offer clinicians guidance in controlling peripheral pain. This is particularly important since management of pain in young age group patients with Fabry disease appears to be inadequate [1]. The Panel is composed of 8 experts (7 physicians/physician scientists, 1 scientist) in the area of Fabry disease and/or peripheral neuropathy from the US, Canada, South America, and Europe. The expert panel meeting was sponsored by Genzyme Corporation.
Clinical course of Fabry neuropathic pain in Fabry disease

Fabry neuropathy in children and adolescents can manifest as neuropathic pain, abnormal temperature tolerance, and paresthesias (e.g., painless tingling). Burning, nagging pain with a symmetric distribution pattern in the palms of the hands and soles of the feet of children or adolescents and peripheral dysesthesias (painful tingling) in fingers and toes are the first symptoms to raise alarm. Recurrent attacks of pain ("pain crises"), described as "excruciating", "agonizing", "lightning" or "stabbing" pain, often begin in the distal parts of the extremities and may radiate proximally [12, 32]. They can be so intense that the patient is confined to bed [12], and episodes can occur daily [4]. They may be triggered by a rapidly changing core body temperature (e.g., fever, stress, physical activity) presumably due to a decreased ability to sweat [12, 32], although they have been noted even in patients with hyperhidrosis [33]. Additional triggering factors include sudden exposure to cold, rapid changes in humidity, and fatigue [34]. Deep ache, significant joint pain, bouts of unexplained fever, and elevated erythrocyte sedimentation rate can accompany a pain crisis [12, 35, 36].

Neuropathic pain was reported by ~60 and to 80% of the affected boys enrolled in the two Fabry disease registries, usually beginning in childhood, and by ~40 to 60% of affected girls, often a few years later than in boys [1, 2]. Most adult males and 60 to 90% of females experience some form of Fabry pain [13, 37-39]. Over time, neuropathic pain appears to diminish, perhaps due to progressive loss of nerve fibers, but can also become more severe [40, 41].

It has recently been proposed to abandon the use of "acroparesthesia" in the description of Fabry neuropathic pain because, by definition, paresthesias are painless.
tingling sensations [42]. In fact, paraesthesias appear to be rather uncommon in Fabry disease as they were reported by only ~10% of affected adults [42].

In children with Fabry small fiber neuropathy, reductions in feelings of well-being and in school attendance and a reluctance to participate in sports, gymnastics, and leisure activities are of particular concern. As the patient ages, the symptoms lead to increasing neurological disability and impairment of quality of life in both males and females [7, 10, 43-45].

As in other conditions with chronic neuropathic pain, pain medication dependence (e.g., opioids) and substance abuse can occur [46]. Patients may develop social-adaptive or psychological functioning deficits [47, 48] and many become depressed, with the presence of neuropathic pain being the strongest predictor of depression [49]. Suicidal ideation has been reported in patients with Fabry disease [49-51].

Accumulation of glycosphingolipids

The primary neuropathic insult in Fabry disease is unknown. It may be due to a combination of factors that are linked with accumulation of GL-3, and possibly with deposition of its deacylated form. Accumulated GL-3, migrated from the plasma into neural cells or synthesized in situ, can interfere with the function of critical proteins, e.g., ion channels, thereby causing nerve injury and dysfunction. GL-3 inclusions have been demonstrated in dermal vascular endothelial and smooth muscle cells, endothelial and perithelial cells of epineural and endoneural small blood vessels, perineural cells, myelinated and unmyelinated axons, and less often in Schwann cells. The dorsal root ganglia have fenestrated blood vessels and appear particularly vulnerable for GL-3.
accumulation (Figure 3). Also in the central nervous system, GL-3 appears to accumulate in regions where the blood-brain barrier is more permeable (e.g., supraoptic, paraventricular and preoptic hypothalamus nuclei, dorsal nucleus of the vagus).

Luminal encroachment and occlusion of neural small blood vessels due to vascular endothelial GL-3 storage, disturbed balance between vasodilatative and vasoconstrictive mechanisms, and thrombotic complications are factors that may contribute to ischemic neural damage. Also, GL-3 accumulation in skin cells may interfere with the function of intradermal sensory receptors. In this respect, it is important to note that, histologically, both the appearance and severity of GL-3 deposits in the skin of affected children were similar to those observed in adult patients.

Although still insufficiently understood, peripheral nerve injury may induce a variety of peripheral and central mechanisms, e.g., axonal sensory hyperexcitability, ectopic spontaneous firing, and central sensitization that have been described elsewhere. The extent of overlap of these mechanisms in the various stages of Fabry neuropathy is uncertain.

Small fiber dysfunction in Fabry neuropathy disease

The pattern of small fiber dysfunction in Fabry disease is seen in various other diseases characterized by peripheral neuropathy, including diabetes mellitus [52, 53]. However, if provoked crises of excruciating pain occur, the diagnosis of Fabry disease should be highly suspected. The Fabry neuropathy in Fabry disease is a length-dependent neuropathy [12, 54] typically associated with a marked reduction of thinly myelinated Aδ fibers (mediating sharp pain, cold perception), unmyelinated C fibers (pain, warmth
perception), and loss of unmyelinated autonomic fibers [17, 19, 21, 23, 24, 40, 55-59]. Female patients, even when asymptomatic, may also be affected by loss of small fiber function [39, 54, 60].

The thermal sensation deficits are initially more pronounced in the feet than in hands, and gradually progress to more proximal parts (Figures 4A,B) [12, 39, 59, 61]. In early stages, impairment of thermal stimuli primarily involves cold perception (A\(\delta\) fibers), rather than warmth perception (C fibers) [62], suggesting that the thinly myelinated A\(\delta\) fibers are more vulnerable to GL-3-induced damage [36, 40, 63, 64].

Disappearance of pain may not necessarily reflect nerve recovery but rather degeneration of nerve fibers and the sensory neuropathy may progress to numbness and hypoalgesia. Recently, an association between the severity of Fabry small fiber neuropathy, determined by cold perception in the feet, and progressive sensorineural hearing loss has been reported, both in male and female patients [65].

Autonomic small fibers are damaged in Fabry disease and this damage is likely to be related to the patients’ gastrointestinal dysmotility (e.g., abdominal cramps, bloating, diarrhea, nausea), hypohidrosis, impaired pupillary constriction, decreased tear and saliva formation, Raynaud phenomena, sensory losses, reduced heart rate acceleration upon exercise and in advanced stages, orthostatic hypotension [17, 37, 66]. The cutaneous response to scratch can be diminished [17, 67], and baroreflex-mediated vasoconstriction can be deficient due to sympathetic vasomotor nerve fiber dysfunction [68]. Pancreatic parasympathetic dysfunction may cause post-prandial diarrhea after consumption of a high-fat meal [69]. Both autonomic sudomotor nerve fibers and sweat gland function are impaired in untreated patients [37, 70]. Hyperhidrosis can also be
recognized in patients with Fabry disease, mainly in females. If present, it often manifests in childhood or adolescence [33].

Of note, the generally accepted assumption that autonomic neuropathy plays an important role in the pathophysiology of Fabry disease has recently been questioned by one group of investigators [71]. The observation of nearly normal male sexual function and autonomic control of the cardiovascular system in patients with Fabry disease led the investigators to suggest that end-organ damage, rather than autonomic dysfunction, might play a prominent role in Fabry disease.

Large fiber dysfunction in Fabry disease

As large A\(\alpha\) and A\(\beta\) fiber modalities (e.g., motor function, position, and vibration sensation) are generally spared in early stages of Fabry disease, it is not surprising that the results of motor and sensory nerve conduction tests have mostly been normal [19, 21, 34, 36, 40, 57, 61, 66, 72, 73]. With progression of the disease, however, large fiber involvement with associated nerve conduction abnormalities may develop. Reductions of compound muscle action potential amplitudes are seen more often than the slowed conduction velocities [40]. Impaired vibration perception may be a consequence of disturbed transmission of the synchronized impulse volleys in large myelinated afferent A\(\beta\) fibers, or by GL-3-induced dysfunction of intradermal corpuscles (mainly Pacinian corpuscles and Meissner bodies [74, 75]) mediating the vibratory stimuli [40, 73]. With age, more severe abnormalities involving large fibers are expected to occur as demonstrated by a significant influence of age on vibratory perception [40].
The mechanisms contributing to development of large nerve fiber abnormalities in a subset of patients are as yet unclear. It has been suggested that Schwann cell pathology due to GL-3 accumulation might account for slowing of conduction velocities [40]. In severely affected patients, Uremia due to failure of renal function-Fabry end-stage renal disease and overuse of alcohol may likely add to the large fiber pathology [40, 55, 66, 76].

Median nerve conduction abnormalities may indicate median nerve entrapment caused by GL-3 accumulation in carpal tunnel structures. A prevalence of carpal tunnel syndrome of ~25% has been reported for both male and female patients with Fabry disease [36, 55].

Diagnosis and simple assessments

The early neurologic manifestations of Fabry disease are initially often subtle and affected children are frequently misdiagnosed as having rheumatism, viral infection, growing pains, “bone problems”, psychogenic pain, cryptogenic pain, food intoxication, or non-specific gastrointestinal pain [77]. Although first symptoms appear in childhood, correct diagnosis may be delayed until well into adulthood. Data from the Fabry Registry shows that the mean diagnostic delay was approximately 11 years for both genders [10]. While still undiagnosed and untreated, the disease increasingly impairs the young patient’s well-being.

Children and young adults with unexplained peripheral neuropathic pains may be referred to the pediatrician, or the pediatric/general rheumatologist or neurologist. Therefore, they play a critical role in recognizing the array of distinct early features of
Fabry disease (Table 1), of which several are related to the small fiber neuropathy. The importance of their role is underpinned by a recent Fabry screening study among individuals with small fiber neuropathy of unknown aetiology; several previously unrecognized patients were diagnosed with Fabry disease [53]. The differential diagnosis of peripheral neuropathy can be significantly narrowed by taking a detailed medical history (Table 2). This should include information on the onset, quality, intensity and distribution of pain symptoms, abnormal responses to normally non-painful stimuli, triggering and exacerbating factors, psychological factors, changes of symptoms over time, and coping skills. Previous and current use of pain medications (prescription, non-prescription and recreational drugs) and smoking habits should be documented. The patient’s general status, energy level, co-morbidities, school, work and sport performance, and lifestyle should be explored. Gastrointestinal problems (abdominal pain, post-prandial diarrhea, number of bowel movements per day, bloating, nausea) and hearing problems need to be documented, as well as the family history (e.g., renal/cardiac failure, transient ischemic attack (TIA) or stroke, early death).

A neuropathy pain assessment scale should be used at the initial assessment and follow up examinations. The Neuropathy Symptoms and Change Questionnaire evaluates the number, severity and change of symptoms, as well as motor, autonomic, large fiber and small fiber sensory nerve function [78]. Other available neuropathic pain evaluation tools include the Leeds Assessment of Neuropathic Symptoms and Signs, Neuropathic Pain Questionnaire, Neuropathic Pain Symptom Inventory, Douleur Neuropathique en 4 questions, pain DETECT, and ID-pain [79]. The Total Symptoms Score has been used for
grading of neuropathic pain in clinical studies in diabetes and Fabry disease patients with peripheral neuropathy [73, 80].

The patients can also be asked to keep a (weekly) pain diary. A more general pain assessment can be performed by using, for example, the Pediatric Pain Questionnaire or the McGill Pain Questionnaire. The quick version, the Short-form McGill Pain Assessment Questionnaire [81], is particularly easy to administer. Quality of life can be assessed by using the Short Form-36 (SF-36®) Health Survey (www.sf-36.org) or Pediatric Quality of Life Inventory (PedsQL™) [82].

A complete physical examination should be performed as it may provide clues to the diagnosis of Fabry disease (Table 2). It should include measurement of height and weight, heart rate (irregular pulse) and supine and standing blood pressure to determine orthostatic hypotension (defined as a drop in systolic blood pressure by at least 20 mmHg, or in diastolic blood pressure by at least 10 mmHg, within the first three minutes upon active standing up from the sitting or supine position, or upon passive head-up tilt) [83]. The skin should be inspected for presence of vascular skin lesions (angiokeratoma, Figure 1), particularly in the bathing trunk area. Cornea verticillata (Figure 2) is readily detectable by slit lamp examination and present in almost all males and 70% of females with Fabry disease [32, 84]. Routine blood work-up is usually normal. Albuminuria may be detected in young patients and is an antecedent to progressive Fabry nephropathy [85].

The neurologic examination in children, adolescents and young adults should focus on sensations mediated by peripheral small fibers, as overt central nervous system involvement is usually not yet present (Table 2). Relevant, easy to perform and non-invasive sensory perception tests include cold, heat, light touch, pinprick, pressure and
vibration perception testing. Assessment of allodynia and hyperalgesia should preferably be carried out in the area of maximal pain. All tests should be performed under comfortable ambient conditions and temperature at the distal lower limbs.

Early in the course of small fiber Fabry neuropathy, impaired appreciation of thermal stimuli primarily involves cold perception rather than warm perception [39, 62]. A rather crude test of thermal perception consists of placing tubes filled with cold and warm water, a cold and warm tuning fork, the handle of a reflex hammer, or thermal discs with a polyvinyl surface on one side and a metal surface on the other side (similar to the “Minnesota Thermal Discs” [86]) on the patient’s foot. Cold sensation can also be assessed by using acetone spray, or by immersing one leg up to the mid thigh (or one forearm) for 30 seconds into ice-cold water [34]. Normal subjects report little discomfort to a brief immersion of a limb in ice water, but the Fabry patient experiences intense burning pain within 10-30 seconds.

Pain perception and hyperalgesia can be tested by applying just enough pressure with a sharp pin to indent the skin. Loss of discrimination between pinprick sensation and application of a blunt pressure sensation points towards small fiber neuropathy.

Perception of light touch and mechanical allodynia can be tested by lightly rubbing the skin with a cotton swab or by lightly squeezing the patient’s leg. Vibration can be assessed by placing a scaled (8/8), vibrating 128 Hz tuning fork to the first metatarsal bone [87].

Symmetrical sensorineural hearing loss can be explored by performing the Rinne test. The stem of a vibrating tuning fork (512 or 256 Hz) is placed on the mastoid process until sound becomes inaudible; the fork is then immediately placed outside the ear. In
case of sensorineural hearing loss, bone conduction and air conduction are both equally reduced. However, to reliably assess or rule out hearing loss, three-tone audiometric testing needs to be performed [88].

Abnormal results of the tests described above may lead to more comprehensive examinations trying to document the sensory abnormalities qualitatively and quantitatively. A range of methods are available for quantification of the nerve fiber dysfunction, including psychophysical quantitative sensory testing (assessing vibratory, cold, warm and heat pain detection thresholds) and methods to test nerve conduction velocities, sympathetic skin response, quantitative sudomotor axon reflex sweating, saliva and tear formation, and other autonomic dysfunction (not further discussed in this manuscript that focuses on simple bedside tests). Given the availability of an accurate diagnostic laboratory test, nerve or skin biopsies are not required for diagnosing Fabry disease, although skin biopsy can detect small fiber disease in yet asymptomatic patients and may be used to quantify loss of skin innervation [39].

Measuring α-galactosidase A enzyme activity in leukocytes is the gold standard assay of diagnosis of Fabry disease in males [4]. Many females with Fabry disease, however, may have enzyme activity levels within the normal range. Diagnosis in females, therefore, requires genetic studies to detect or confirm the Fabry mutation. Extended familial assessment identified, on average, five family members with Fabry disease for every proband [89]. Therefore, the importance of taking a family history and genetic testing in all members of the family of a newly identified patient cannot be underestimated.
Evaluation and monitoring of the small fiber Fabry neuropathy are important as the elicited signs and symptoms may provide insight into possible pathophysiological mechanisms and, in turn, may provide guidance on optimal pain management. Given the progressive nature of Fabry disease, regular objective and comparable monitoring of the neuropathy and its progression using reproducible measures of staging is required for therapy adjustment. Particularly useful may be the neuropathy staging scheme developed by Dyck [90] as it scores sensory, autonomic, and motor components separately, and provides an overall stage. Other available methods to score severity include the Total Symptom Score for grading of pain [73, 80], and the Neuropathy Impairment Score [91].

Treatment

Early diagnosis of children and adolescents with Fabry neuropathy is particularly important as adequate management of pain and other symptoms can greatly improve the patient’s quality of life. Current management of pain in the pediatric age-group patients with Fabry disease appears to be inadequate. This is as illustrated by the fact that the majority of children in the Fabry Registry who had neuropathic pain reported not to have received any pain medication [1].

Given the episodic and provoked nature of many of the painful crises, it should be emphasized that identification of individual provocateurs is important for conservative management. Patients can change their lifestyle and take preventive measures to avoid exposure to, for example, rapid changes in temperature. The goal of treatment pharmacological management of neuropathic pain (Table 3) should be to decrease pain to a tolerable and functional level and, thereby, to improve the patient’s quality of life,
activities of daily life, and psycho-social function. **Patients can change their lifestyle and take preventive measures to avoid exposure to rapid changes in temperature and, thereby, prevent painful crises.**

Pain treatment should consider the most likely mechanism in each case and should take into account that the mechanisms might change with disease progression. Medications should be prescribed to pediatric or adult patients with careful consideration of the dosage, the intended effects and controlling side effects. We are not aware of any randomized controlled trial of an analgesic for the treatment of painful peripheral neuropathy in Fabry disease; only some empiric use of drugs has been reported [92-94]. However, a substantial body of evidence exists for the treatment of other types of painful neuropathy and this may serve as a guide for the physician treating the Fabry disease patient [95-98]. **Pain treatment should generally consider the most likely mechanism in each case. However, in the attempt to achieve optimal pain management, multiple medications targeting different aspects of the complex pathways might be appropriate considered in patients with advanced disease. It is recommendable to start pain medication(s) at low dose, and to evaluate the tolerability and effectiveness of a change in medication(s) after 2-3 weeks, in the attempt to achieve optimal pain management, better tolerated, and more effective.**

Anticonvulsants are commonly used to reduce pain in neuropathic pain disorders, including diabetic neuropathic pain [95-98]. Carbamazepine alone [94], or in combination with pregabalin (rather than gabapentin) [98] is recommended as first-line treatment in Fabry neuropathic pain. Symptoms suggestive of autonomic dysfunction should be monitored as dose-dependent exacerbation of autonomic dysfunction has been reported
Antidepressants, particularly dual reuptake inhibitors of both serotonin and norepinephrine (SNRIs; venlafaxine, duloxetine; black-box warning for use in pediatric age group) are also viable options. Because of their anti-cholinergic effect, tricyclic antidepressants block the reuptake of norepinephrine and serotonin, presumably modulate descending inhibitory pathways and can block voltage dependent sodium channels. TCAs have potential concomitant and difficult side-effects in Fabry patients (e.g. accentuation of autonomic instability). Prescription of opioids carries the risk of drug dependence or abuse. Although they should only be given if other therapeutic options are ineffective, opioids may be helpful in the acute management of intolerable pain crises [95-98].

Topical application of anesthetics may provide relief of burning pain or hyperalgesia. It is recommendable to start pain medication(s) at low dose, and to evaluate the effectiveness of a change in medication(s) after 2-3 weeks. In the attempt to achieve optimal pain management, multiple medications targeting different aspects of the complex pathways might be appropriate, better tolerated, and more effective. Given the episodic and provoked nature of many of the painful crises, it should be emphasized that identification of individual provocateurs is important for conservative management.

Anticonvulsants are commonly used to reduce pain in neuropathic pain disorders. Based on the model of diabetic painful neuropathic pain, Pregabalin (rather than Gabapentin) would be the treatment of choice in first-line treatment. Tricyclic anti-depressants (TCAs) block the reuptake of norepinephrine and serotonin, presumably modulate descending inhibitory pathways and can block voltage dependent sodium channels. TCAs have potential concomitant and difficult side-effects and the anti-cholinergic effect may actually accentuate some of the Fabry patient’s problems, for
example the autonomic instability. Prescription of opioids carries the risk of drug
dependence or abuse. Although they should only be given if other therapeutic options are
ineffective, opioids may be helpful in the acute management of intolerable pain crises.
Topical application of anesthetics may provide relief of burning pain or hyperalgesia.

**With increasing disability and unpredictability and difficulty of controlling the
pain, patients are at risk of chronic depression [49]. Patients should be evaluated for
psychosocial and behavioral deficits and appropriately treated.**

Common non-neurologic symptoms of Fabry disease and risk factors should be
carefully monitored and treated as outlined in the general guidelines for the management
of Fabry disease patients [99]. Co-morbidities must be addressed and smoking
discouraged as it may aggravate airflow obstruction commonly found in patients with
Fabry disease [100], and further increase the risk of cardiovascular and cerebrovascular
events. **Anti-platelet drugs (aspirin, clopidogrel) are recommended for patients at risk of
thrombotic events. Dyslipidemia should be treated with statins [99], and recently the use
of statins to prevent stroke in Fabry disease has been discussed [101].**

Enzyme replacement therapies (ERTs) are available for treatment of patients with
Fabry disease and several clinical studies have reported pain outcomes [45, 73, 102-111].
For example, the Total Symptom Score improved with biweekly ERT at the dose of 1
mg/kg for 18 or 23 months [73], and some adults were able to discontinue their pain
medication(s), or doses of pain medications could be tapered [104, 111]. Improvements
in the Bodily Pain scale of the SF-36 during 2 to 3 years of treatment with ERT (1
mg/kg), particularly in younger patients, have recently been reported [45]. Signs of
recovery of small nerve fibers have been noted. Significant improvements in vibration,
heat-pain, and cold perception thresholds, indicating recovery of Aβ, Aδ- and C-fiber function, have been reported in adults treated biweekly with 1 mg/kg agalsidase beta for 18 or 23 months [73].

As for the renal [106, 112] and cardiac complications [113] of Fabry disease, early initiation of treatment may provide a better outcome, i.e., improvement or more optimal preservation of peripheral nerve function. Additional studies are needed in pediatric patients to assess if early-stage treatment can prevent the often devastating peripheral neurologic burden of Fabry disease.

Conclusions

Small fiber dysfunction accounts for many of the incapacitating complaints reported by most children, adolescents and young adults affected by Fabry disease. These early complaints (e.g., chronic burning peripheral pain, attacks of acute excruciating peripheral pain, and manifestations of autonomic dysfunction, such as gastrointestinal dysmotility and hypohydrosis and pain) should prompt the clinician to consider the diagnosis Fabry disease and to perform appropriate tests. The burden of the progressive neurologic disease should be assessed early, comprehensively and regularly as the neurologic disability in Fabry disease increases with age, both in males and females. Adequate management of the pain is essential for improving the quality of life of young patients, as are multidisciplinary management and timely intervention with disease specific enzyme replacement therapy.

Acknowledgement and funding
The 1st International Expert Panel on Fabry-Neuropathy in Fabry Disease was sponsored by Genzyme Corporation. The authors wish to thank Hans Ebels, MD, of Genzyme Corporation, for his assistance in preparing this manuscript for submission. The authors maintained full and independent responsibility for the content of this manuscript.

Authors’ contributions

This review is based on discussions of the available evidence by an international panel that met in January 2009 at the 1st International Expert Panel on Fabry-Neuropathy in Fabry Disease, Rome, Italy. All authors are member of this Expert Panel. APB and MJH were involved in drafting the manuscript and all other authors have contributed important scientific content. All authors have approved the final draft.

List of abbreviations used

GL-3: globotriaosylceramide; lyso-Gb3: globotriaosylshingosine; TIA: transient ischemic attack; SF-36: Short Form-36; PedsQL: Pediatric Quality of Life Inventory; TCA: tricyclic antidepressant; ERT: enzyme replacement therapy.

Competing interests

APB has been in receipt of honoraria for lectures on Fabry disease from Genzyme Corporation and Shire HGT. KBS is a consultant to Amicus Therapeutics and has received clinical trial support from Amicus and Genzyme Corporation, and research support from Genzyme Corporation. JMP has been in receipt of honoraria for lectures on Fabry disease from Genzyme Corporation. GJB has received a consulting fee from
Genzyme Corporation. RB has received grants and research support from Genzyme Corporation. CS has received financial support from Genzyme Corporation for lecturing and research support. ATM received travel assistance and speaker’s fees from Genzyme Corporation. MJH has received financial support from Genzyme Corporation for lecturing, consulting activities, travel assistance, and research support. APB and KBS have received honoraria for participation in the European and North American Fabry Registry Board of Advisors, respectively, from Genzyme Corporation, and JMP for serving as a Latin American Fabry Registry Coordinator. The Fabry Registry is sponsored by Genzyme Corporation.
References

43. Gold KF, Pastores GM, Botteman MF, Yeh JM, Sweeney S, Aliski W, et al:

48. Laney DA, Gruskin DJ, Fernhoff PM, Cubells JF, Ousley OY, Hipp H, et al:

74. Goldberg JM, Lindblom U: **Standardised method of determining vibratory perception thresholds for diagnosis and screening in neurological investigation.** *J Neurol Neurosurg Psychiatry* 1979, **42**:793-803.

75. Tegner R, Lindholm B: **Vibratory perception threshold compared with nerve conduction velocity in the evaluation of uremic neuropathy.** *Acta Neurol Scand* 1985, **71**:284-289.

101. Politei JM: Can we use statins to prevent stroke in Fabry disease? *J Inherit Metab Dis* 2009, **32**:481-487.

Table 1. Possible early symptoms of Fabry disease

<table>
<thead>
<tr>
<th>Organ system</th>
<th>Sign/Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Reduced quality of life; reduced well-being; reduced school/work performance and engagement in leisure activities, including sports</td>
</tr>
<tr>
<td></td>
<td>Psychosocial and behavioral deficits</td>
</tr>
<tr>
<td></td>
<td>Poor weight gain</td>
</tr>
<tr>
<td>Nervous system</td>
<td>Chronic burning pain</td>
</tr>
<tr>
<td></td>
<td>Attacks of excruciating pain</td>
</tr>
<tr>
<td></td>
<td>Paresthesias/dysesthesias</td>
</tr>
<tr>
<td></td>
<td>Sensory losses</td>
</tr>
<tr>
<td></td>
<td>Hypohidrosis/anhidrosis</td>
</tr>
<tr>
<td></td>
<td>Abdominal cramp, (post-prandial) diarrhoea, bloating, nausea</td>
</tr>
<tr>
<td></td>
<td>Tinnitus, hearing loss</td>
</tr>
<tr>
<td></td>
<td>Dizziness</td>
</tr>
<tr>
<td></td>
<td>Orthostatic hypotension</td>
</tr>
<tr>
<td></td>
<td>White matter lesions (rare at young age)</td>
</tr>
<tr>
<td>Skin</td>
<td>Vascular lesions (angiokeratoma, Figure 1)</td>
</tr>
<tr>
<td>Eyes</td>
<td>Corneal/lenticular opacities (seen on slit lamp examination, Figure 2)</td>
</tr>
<tr>
<td></td>
<td>Vascular tortuosity (retina, conjunctiva)</td>
</tr>
<tr>
<td>Kidneys</td>
<td>Microalbuminuria, proteinuria</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Impaired concentration ability</td>
</tr>
<tr>
<td></td>
<td>Increased urinary GL-3 excretion</td>
</tr>
<tr>
<td></td>
<td>Renal hyperfiltration (early), decrease in glomerular filtration rate</td>
</tr>
<tr>
<td>Heart</td>
<td>ECG abnormalities (for example, short PR interval)</td>
</tr>
<tr>
<td></td>
<td>Arrhythmias, hypertrophic cardiomyopathy (young adults)</td>
</tr>
</tbody>
</table>
Table 2: Medical history and examinations in young patients with Fabry disease

<table>
<thead>
<tr>
<th>Medical history</th>
</tr>
</thead>
<tbody>
<tr>
<td>General status</td>
</tr>
<tr>
<td>Decreased stamina and exercise; psychologic co-morbidities; school, work and sport participation and performance; smoking</td>
</tr>
<tr>
<td>SF-36® Health Survey or PedsQL™</td>
</tr>
<tr>
<td>Pain</td>
</tr>
<tr>
<td>Onset; quality; intensity; distribution; abnormal responses to stimuli; exacerbating factors; pain meds (past, current) McGill Pain Questionnaire, Brief Pain Questionnaire, Pediatric Pain Questionnaire</td>
</tr>
<tr>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Abdominal cramps; (post-prandial) diarrhea; number of bowel movements/day; bloating; nausea</td>
</tr>
<tr>
<td>Family history</td>
</tr>
<tr>
<td>Renal/cardiac failure; TIA or stroke; early death</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Complete physical examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Including height; weight; pulse irregularity; supine and standing blood pressure; vascular skin lesions (Figure 1); cornea clouding (requires slit lamp exam, Figure 2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neurologic examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal perception (cold/warm water tubes, a cold and warm tuning fork or reflex hammer, or thermal discs at dorsal foot, e.g., “Minnesota Thermal Disks” [81])</td>
</tr>
<tr>
<td>Pain perception (pinprick to skin of limbs and trunk)</td>
</tr>
<tr>
<td>Light touch perception (cotton swab or lightly touching skin, e.g., an legs vs. feet, testing distal vs. proximal sensation)</td>
</tr>
<tr>
<td>Vibration perception (vibrating tuning fork (Rydell-Seiffer®) to 1st</td>
</tr>
</tbody>
</table>
metatarsal bone)

Sensorineural hearing loss (Rinne test, three-tone audiometry)

<table>
<thead>
<tr>
<th>Definitive diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-Galactosidase A enzyme activity in leukocytes or whole blood in males</td>
</tr>
<tr>
<td>GLA mutation analysis in females (known family mutation testing or full gene sequencing)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Genetic risk assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnosis should be followed by genetic testing of the entire family</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Severity scoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuropathy Staging Scheme [90], Neuropathy Symptoms and Change Questionnaire [78]</td>
</tr>
<tr>
<td>Environmental modifications</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>Co-morbidities</td>
</tr>
<tr>
<td>Symptomatic treatment</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Disease-specific Biweekly enzyme replacement therapy, alpha galactosidase A treatment

Medications in bold are preferred medications
Figure 2A

Figure 2B

Figure 2

Red-purple, non-blanching vascular skin lesions. Angiokeratoma are usually distributed on the buttocks, groin, umbilicus (A) and upper thighs (bathing trunk distribution), and occasionally on lips and oral mucosa (B).
Figure 42

Figure 3

Dorsal root ganglion cells from a Fabry patient. The ganglion cells are swollen by accumulation of glycolipids and stained with Alcian blue (photo courtesy of E. Kaye).
Figure 4

Photomicrographs of frozen skin sections (50 µm) from a Fabry patient. Samples immunoreacted with PGP 9.5 and were processed for fluorescence microscopy with Cy3 labelled secondary antibodies. Note the lack of intraepidermal nerve fibers and persistence of fibers pertaining to the subepidermal nerve plexus (arrows) in the sample from the lower leg skin of a Fabry patient (A). Note the dense innervation of the epidermis (arrows) in the sample from the back of the Fabry patient, taken at the dermatome Th 12 (B). Bar = 50µm.
Figure 2