High prevalence of tuberculosis among university students in Northwest Ethiopia: A retrospective study

Beyene Moges*¹, Bemnet Amare², Gizachew Yismaw³, Meseret Workineh¹, Shitaye Alemu⁴, Desalew Mekonnen⁴, Ermias Diro⁴, Belay Tesema³, Afework Kassu³

¹Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar

²Department of Biochemistry, College of Medicine and Health Sciences, University of Gondar

³Department of Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar

⁴Department of Internal Medicine, College of Medicine and Health Sciences, University of Gondar

*Corresponding author: University of Gondar, Gondar, Ethiopia, P.O.BOX 196, Email: beyemoges@gmail.com, Tel: +251-913-31-20-10

Authors’ e-mail:

BA: amarebem6@gmail.com

GY: gizachewyismaw@yahoo.com

MW: mwmesi@gmail.com

SA: shitayea@yahoo.com

DM: desalewm@yahoo.com
ED: ermi_diro@yahoo.com

BT: bt1488@yahoo.com

AK: afeworkkassu@yahoo.com
Abstract

Background: Universities tend to be highly congregate settings, both in the classroom and in residences, and thus provide special opportunities for large number of persons to be exposed to a person with tuberculosis (TB). Despite the high prevalence of TB in Ethiopia, the TB prevalence and the treatment outcome among students have never been studied. Therefore, this study was aimed at determining the prevalence and treatment outcome of TB among students at University of Gondar from January 2007 to December 2011.

Methods: Data on age, sex, TB type, category, and treatment outcome of students with TB was collected from medical records of University of Gondar Hospital, TB Directly Observed Treatment Short Course (DOTS) clinic.

Results: A total of 181 students were found to have TB during the five years period. Smear positive pulmonary TB, smear negative pulmonary TB and extra pulmonary TB, respectively, were observed in 46 (25.4%), 81 (44.8 %) and 54 (29.8%) of the cases. The prevalence of all forms of TB per 100,000 populations in the University ranged from 297.6 in 2009 to 404 in 2011, respectively. Higher prevalence of TB, 1830.1 vs 735.6 and 993.9 vs 659.6 per 100,000 populations, was observed in social sciences and humanities faculty than the medical college campus. The overall treatment outcome was classified as cured in 36(19.9%), completed in 91(50.3%), defaulted in 9(5%), failed in 3(1.7%), died in 1(0.6%), and transferred out in 41(22.7%) of the cases.

Conclusion: There is high prevalence of TB with a relatively poor treatment outcome among students in University of Gondar demanding urgent intervention. Active TB surveillance systems
are also required in such group of people to get a clear picture of the TB situation. Assessing the factors associated with the high prevalence and poor treatment outcome to gear the TB control strategy would also be essential.

Key words: Tuberculosis; students; congregated setting; Ethiopia
Background

Boarding schools like colleges are one of the congregated settings that create favorable conditions for TB transmission. The crowded situation both in classrooms and dormitories increases the risk of exposure to TB and other aerosol infections. While the probability of transmission between individuals depends upon many factors, it greatly increases if TB becomes active and remains untreated; a person with active but untreated TB can infect 10-15 people per year [1]. Thus such kind of congregated setting should be target to implement TB infection control measures.

The prevalence of TB among college students in some countries like China is reported to be high [2] and there were several reported TB outbreaks in Chinese colleges [3,4] and elsewhere [5,6]. Several other studies also revealed high risk of acquiring TB infection and subsequent transmission among college students [5,7-15]. A study conducted among students of Jimma University, southwest Ethiopia, showed that contact in the campus to students who have TB seems to be one of the major factors responsible for the acquisition of TB [16]. Despite the fact that Ethiopia ranks 7th out of the 22 high TB burden countries [17], the TB prevalence and the treatment outcome among students in the study area have never been studied. Therefore, this study was aimed at determining the prevalence and treatment outcome of TB among students at University of Gondar (UoG) in northwest Ethiopia, from January 2007 to December 2011.
Materials and methods

Study setting

The University of Gondar is one of the 31 universities in Ethiopia. Currently, there are more than twenty thousand students enrolled in this University. The University has five main campuses: College of Medicine and Health Sciences (CMHS) campus, Maraki Campus, Atse Theodros Campus, Atse Fasil Campus and Meles Zenawi Campus. The total number of students enrolled in the university during the respective years from 2007 to 2011 were 8817, 9109, 10418, 10453, and 11385 (Table 1). Table 1 summarizes the total numbers of students in each faculty or college during the five years period. CMHS is a medical college enrolling students of different categories of health sciences, medicine and pharmacy in the regular and extension programs. The college has a tertiary hospital, the Gondar University Hospital, which renders clinical service for about six million people in northwest Ethiopia. Students attach at different wards and outpatient departments of the hospital during their clinical courses. The Maraki campus which is 3km away from CMHS encompasses the Faculty of Social Sciences and Humanities, School of Law, and School of Education. The third campus is Atse Theodros campus which is named after Emperor Theodros 4th of Ethiopia. It is located near Maraki campus and it hosts the head office of the University. It encompasses the Faculty of Veterinary Medicine, Faculty of Natural and Computational Sciences, Faculty of Agriculture and Faculty of Business and Economics. The fourth campus is the newly opened Atse Fasil campus which is named after Emperor Fasiledes of Ethiopia. It encompasses the School of Technology. There are around 2135 enrolled students residing in this campus. Our study, however, didn’t include students from this campus. The fifth campus is Meles Zenawi campus which is named after the late Prime Minster Meles Zenawi of
Ethiopia. Our study didn’t also include students from this campus as students are to be transferred yet.

On average, a dormitory is shared by six to eight students share in all the campuses. However, the numbers of students in a dormitory may reach up to 20-30 in some situations. While 100-200 students share a class room 2000-5000 students share a single dining hall three times a day. Though there are student clinics in each campus of the University, all students get free medical service at the University of Gondar Hospital.

Data collection procedure

Using a standardized form, data on age, sex, TB type, category, and treatment outcome was collected from medical records of University of Gondar Hospital, TB DOTS clinic. All students of University of Gondar who were diagnosed and initiated on TB treatment at the Hospital DOTS clinic were considered.

Definitions

Clinical case and treatment outcome definitions for TB were used according to the standard definitions of the National Tuberculosis and Leprosy Control Program guideline (NTLCP) adopted from WHO [18].

Treatment success rate (TSR):

It is the sum of the percentages of cure and treatment completed rounded off to the nearest digit [19].
Data analysis

Data was analyzed using statistical package for social sciences (SPSS) version 16 and descriptive statistics was carried out.

Ethical considerations

This was a retrospective record analysis with no direct intervention to the patients. The study was conducted after permission was obtained from the University of Gondar Hospital. No patient identifiers were used during data collection.

Results

There were a total of 181 students diagnosed for TB at Gondar University Hospital from January 2007 to December 2011. Majority (149, 82.3%) of them were males. The mean (±SD, range) age of the students was 22.7(±1.54, 17-28) years. The most frequent (166, 91.7%) age group was between 19 and 23 years of age. Generally, most of the TB cases were from Maraki campus (83, 45.8%) followed by CMHS (68, 37.6%) and Atse Theodros campuses (30, 16.6%). The trend and distribution of all forms of TB per campus is shown in table 2.

The prevalence of all forms of TB per 100,000 populations in the University ranged from 297.6 in 2009 to 404 in 2011, respectively. The prevalence of all forms of TB per 100,000 populations in Maraki Campus ranged from 379.2 to 1830.1 while it was between 171.3 and 735.6 in CMHS and between 0 and 214.4 in Atse Theodros Campuses. The prevalence of TB in the University was consistently high in all the five years. The prevalence in 2011 was 1.5 times higher than the national TB prevalence in the same year (Table 3). The prevalence showed decrement from 347.3/100,000 populations in 2007 to 297.6/100,000 in 2009 with a subsequent rise to 373.1 and
404/100,000 populations in 2010 and 2011 respectively. The highest campus specific TB prevalence (1830.1/100,000 populations) detected was from Maraki in 2007 while the lowest was in Atse Theodros where the prevalence of TB was zero in the same year. The TB prevalence in Maraki campus in the years 2007 and 2008 was 3.2 and 2.3 times higher than the prevalence in the general population, respectively. Table 3 compares the TB prevalence of each campus and the University to that of the national prevalence.

TB cases were categorized in to new, relapse, failure, default, transferred in and other cases before treatment was begun in all the five years. Majority (140, 77.3%) of them were new cases. However, there were two relapse, two failure and two defaulter cases seen during the five years period.

TB type was classified as smear negative pulmonary TB in 81(44.8%), extra pulmonary TB in 54(29.8%) of the cases and smear positive pulmonary TB in 46(25.4%). The proportion of smear positive pulmonary TB showed decrement from 45.5% in 2007 to 9.7% in 2009 with a subsequent rise to 17.9% and 28.3% in 2010 and 2011, respectively. The trend and distribution of TB types at the University of Gondar during the five years period is described in table 4.

The overall treatment outcome was classified as cured in 36(19.9%), completed in 91(50.3%), defaulted in 9(5%), failed in 3(1.7%), died in 1(0.6%), and transferred out in 41(22.7%) of the cases. The rate of cure among the smear positive pulmonary TB cases showed a dramatic fall from 21.2% in 2007 to 6.5% in 2009 with a subsequent rise to 41.3% in 2011. Failure was reported in three of the five years, 2007, 2008 and 2010 while default was reported in all the five years except in 2007. The highest rate of treatment failure was 3.1% in 2008. The rate of default ranged from 0% in 2007 to 10.3% in 2010 and the trend was increasing except in the year 2011.
(6.5%). A single case of death was documented in one of the five years, 2010 [Table 5]. The treatment success rate (TSR) among the students in University of Gondar was generally low ranging from 58.1% in 2009 to 82.9% in 2011 with a mean TSR of 70.2%. In comparison to the national TSR, the students TSR was lower in all the five years. The trend of TB treatment outcome, TSR among the students in the University of Gondar, and the national TSR for comparison is showed in table 5.

Discussion

Colleges tend to be highly congregated settings, both in classrooms and dormitories, and thus provide special opportunities for large numbers of persons to be exposed to a person with TB. This study, which is the first in its type in northwest Ethiopia, revealed high prevalence of TB per 100,000 populations among students in University of Gondar was very high ranging from 297.6 in 2009 to 404 in 2011 (Table 3). The prevalence in the University was increasing since 2009 and become even higher than the national prevalence in the year 2011 [20].

This study also revealed that campus specific prevalences were much higher in some of the years in comparison to the respective national prevalences [17,20-23] even if not adjusted for age. Amongst of these, 1830.1 (3.2x the national prevalence [21]) and 993.9 (2.3x the national prevalence [22]) per 100,000 populations in Maraki during 2007 and 2008 respectively and 735.6 (2.4x the national prevalence [18]) and 659.6 per 100,000 populations (1.9x the national prevalence [20]) in CMHS during 2010 and 2011 respectively are worth mentioning (Table 3). The decreasing trend of TB in Maraki campus from 2007 to 2010 was followed by an increment in 2011 (Table 3) which was 1.9 times higher the national prevalence in the same year [20]. An increasing trend of TB prevalence was observed in Atse Theodros Campus from zero in 2007 to
214.4/100,000 populations in 2011. The very low TB prevalences (0 and 24.4/100,000 populations) in the years 2007 and 2008 among students in Atse Theodros campus could be explained by the fact that the campus was just established at those times and students from that campus might have registered as from Maraki; the two campuses are a walking distance apart. Likewise, the very high prevalences of TB in Maraki campus during 2007 and 2008 could be for the same reason; students from Atse Theodros campus might have registered as if they were from Maraki while only the students from Maraki were used as denominator. The increasing TB trend in Atse Theodros campus in the subsequent years (Table 1 and 2) could be from proper documentation of the campus addresses. It could also be from an increment of the actual TB prevalence. An increasing trend was also observed in CMHS from 171.3 in 2007 to 735.6 per 100,000 populations in 2010. The high prevalence in CMHS persisted in the year 2011 with a 659.6/100,000 populations prevalence. One of the reasons for the high and increasing prevalences of TB in the University could be overcrowding. Low level of knowledge and attitude about the TB transmission and prevention mechanism could also be another factor. Poor TB infection control activities in the campuses, especially in Maraki, may also be another explanation. Occupational exposure could also be a factor especially to those in CMHS as medical and health science students stay in outpatient and inpatient departments of Gondar University Hospital during their clinical attachments. This high prevalence in the University in general and the campuses specifically demands urgent action as the situation is both alarming and unacceptable. Moreover, the reasons why TB prevalence was high in Maraki than CMHS where students are exposed to TB patients everyday requires further investigation. Besides, the high prevalence of TB in the study area could pose problems to the TB control in the general population as TB from University may spread through students and staff into the community.
The probability of transmission between students greatly increases as a significant proportion of the TB cases (25.4%) were smear positive. A student with active and untreated TB could infect 10-15 other students per year [1] and further increase the rate of transmission. Periodic screening and characterization of associated factors for transmission with subsequent intervention in the University could impact on the TB control in the community.

As per the WHO recommendation [24], all the students who were diagnosed to have TB in this study were categorized in to new, relapsed, failed, and defaulted. Accordingly, in the current study, there were two treatment failure, two relapse, and two default cases from the 2007 and 2008 cohorts, the 2009 and 2010 cohorts, and the 2008 and 2011 cohorts, respectively. In other words, there were six (3.3%) students who were started on a retreatment regimen during the five years period. Out of this, one of the treatment failure cases was diagnosed to have multidrug resistant (MDR) TB and was started with second line regimen at St. Peter’s Specialized TB Hospital in Addis Ababa. The other treatment failure case was transferred out just like the two defaulter cases and nothing is known about their subsequent status. One of the relapse cases died during the year 2010 being on retreatment regimen while the other was transferred out. Despite the fact that the treatment outcomes of the four cases on the retreatment regimen during the study period were unknown, the outcome of the remaining two (33.3%) was grave, one died while the other developed MDR-TB.

This study also found out that there was a relatively low TSR among the students in the University of Gondar. Except for the year 2011, all the TSRs were far from the national figures (Table 5) [17,20-23]. The low TSR could be due to the relatively high transferred out rate. There were high defaulter and failure rates as well. Failure was reported in three of the five years while
default was reported in all the five years except in 2007 (Table 5). There was also a case that died while on retreatment. The cause of death could be anything but the direct effect of MDR-TB could be one. If this was what happened, then the student had the chance to transmit the resistant strain to quite a large group of students. While the probability of transmission between individuals depends upon many factors, it greatly increases if TB becomes active and remains untreated [1]. The other student who developed MDR-TB while on retreatment regimen could have done the same. Therefore, the findings of the current study urge the need to strengthen the TB control program in colleges and other higher education systems in the country.

WHO recommends, based on expert opinion, an empirical five drug retreatment regimen after failing, interrupting, or relapsing from prior treatment in low and middle-income countries [22]. Likewise, the six students at UOG with treatment failure, relapse and default were started with the empirical retreatment regimen. However, the recently updated WHO guideline recommends drug-susceptibility testing (DST) prior to retreatment [25] and treatment of confirmed treatment failures with region-specific standardized regimens [26] In contrary to the aforementioned WHO recommendations, none of the six students who were on retreatment regimen underwent DST prior to start of therapy. This might mainly be due to the poor access for DST services in Ethiopia. Nevertheless, it is known inadequate regimens amplify drug resistance [27-31] with resultant grave treatment outcomes. This is evidenced by the death of one of the relapse cases and development of MDR-TB by one of the treatment failure cases while on the standard retreatment regimen. This alarms the urgent need to further scale up the TB culture and DST laboratory capacity building in Ethiopia with simultaneous revision of the current retreatment guideline based on available national data. Further studies are also required to ease decision
making for policy makers on TB prevention and control strategies in congregate settings like colleges.

There was high transferred out rate (22.7%) during the five years among students in the University which could probably be aggravated by summer vacations. The transferred out cases might have been cured or successfully completed. It could also result in to unfavorable TB treatment outcomes like treatment failure and default unless adequate information was given to the students. The lack of information about transferred out cases, therefore, limits the strength of reports about TSR from DOTS clinics. Lack of clear guideline between referring and accepting DOTS clinics requires evaluation and immediate intervention. The primary DOTS clinic should have collected treatment outcome data from the accepting clinics. Therefore, efficient counseling and follow up of transferred out patients is mandatory to avoid poor treatment outcomes. Similarly, developing a clear guideline on how to trace and report transferred out cases is essential.

In summary, there was high prevalence of TB among students in the UoG especially in Maraki and CMHS campuses. TB treatment outcome was also far from the respective national TSR in most of the years. Risk of developing MDR-TB was also a problem in retreatment cases. Therefore, strong TB prevention and control programs are required at the UoG and other universities in Ethiopia. Use of DST prior to initiation of retreatment regimen should also be stressed for treatment failure, relapse and default cases especially in congregate settings as the risk of MDR-TB transmission could be enhanced.
Conclusion

There is high prevalence of TB with a relatively poor treatment outcome among students in University of Gondar which demands urgent intervention. Camus specific prevalences were even higher in Maraki and CMHS demanding further research and strengthening TB infection control systems. Use of DST prior to initiation of retreatment regimen should also be stressed for treatment failure, relapse and default cases especially in congregate settings as the risk of MDR-TB transmission could be enhanced. Besides, periodic and active TB surveillance systems are required in such group of people to get a clear picture of the TB situation. Assessing the factors associated with the high TB prevalences and poor treatment outcomes among students could also be imperative to gear the TB control strategy.

List of abbreviations

CMHS=College of Medicine and Health Sciences; DOTS=Directly Observed Treatment Short Course; DST=Drug Susceptibility Testing; MDR=Multidrug Resistant; MDR-TB=Multidrug Resistant Tuberculosis; NTLCP=National Tuberculosis and Leprosy Control Program guideline; SD=Standard Deviation; SPSS=Statistical Package for Social Sciences; TB=Tuberculosis; TSR=Treatment success rate; UoG=University of Gondar; WHO=World Health Organization

Authors’ contribution

BM was involved in the conception of the study, data collection, analysis, and drafting the manuscript. MW, BA, GY and AK were involved in data collection and analysis while BT, DM, SA and ED were involved in drafting and critically reviewing of the manuscript. All the authors have read and approved the manuscript.
Competing interest

The authors declare they have no competing interests.

Acknowledgements

The study was financially supported by the University of Gondar, Ethiopia. We would like to thank the staff of the DOTS clinic at University of Gondar Hospital without whom this study could not have been completed.

References

11. Munoz Sanchez AI, Bertolozzi MR. *Functioning of the concept of vulnerability to tuberculosis amongst university students.* Cien Saude Colet 2011, 16(2):669-75.

Table 1: The total number of students registered per campus over the five year study period

<table>
<thead>
<tr>
<th>Campus</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMHS</td>
<td>2919</td>
<td>3194</td>
<td>2705</td>
<td>2855</td>
<td>2729</td>
</tr>
<tr>
<td>Maraki</td>
<td>1530</td>
<td>1811</td>
<td>2901</td>
<td>2555</td>
<td>3059</td>
</tr>
<tr>
<td>Atse</td>
<td>4368</td>
<td>4104</td>
<td>4812</td>
<td>5043</td>
<td>5597</td>
</tr>
<tr>
<td>Theodros</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8817</td>
<td>9109</td>
<td>10418</td>
<td>10453</td>
<td>11385</td>
</tr>
</tbody>
</table>

CMHS = College of Medicine and Health Sciences
Table 2. Trend of all forms of TB by campus among students in University of Gondar, 2007-2011, N=181

<table>
<thead>
<tr>
<th>Year</th>
<th>Campus</th>
<th>N (%)</th>
<th>N (%)</th>
<th>N (%)</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Maraki</td>
<td></td>
<td>CMHS</td>
<td>Atse Theodros</td>
<td>Total</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>28</td>
<td>5</td>
<td>0</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>(84.8)</td>
<td>(15.2)</td>
<td>(0)</td>
<td></td>
<td>(100)</td>
</tr>
<tr>
<td>2008</td>
<td></td>
<td>18</td>
<td>13</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>(56.2)</td>
<td>(40.6)</td>
<td>(3.1)</td>
<td></td>
<td>(100)</td>
</tr>
<tr>
<td>2009</td>
<td></td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>(35.5)</td>
<td>(35.5)</td>
<td>(29)</td>
<td></td>
<td>(100)</td>
</tr>
<tr>
<td>2010</td>
<td></td>
<td>10</td>
<td>21</td>
<td>8</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>(25.6)</td>
<td>(53.8)</td>
<td>(20.5)</td>
<td></td>
<td>(100)</td>
</tr>
<tr>
<td>2011</td>
<td></td>
<td>16</td>
<td>18</td>
<td>12</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>(34.8)</td>
<td>(39.1)</td>
<td>(26.1)</td>
<td></td>
<td>(100)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>83</td>
<td>68</td>
<td>30</td>
<td>181</td>
</tr>
<tr>
<td></td>
<td>(45.9)</td>
<td>(37.6)</td>
<td>(16.6)</td>
<td></td>
<td>(100)</td>
</tr>
</tbody>
</table>

TB=Tuberculosis, N=number, CMHS=College of Medicine and Health Sciences
Table 3. Prevalence of all forms of TB among students in the University of Gondar in comparison to the national TB prevalence, 2007-2011

<table>
<thead>
<tr>
<th>Year</th>
<th>Prevalence of TB per 100,000 populations in Maraki</th>
<th>Prevalence of TB per 100,000 populations in CMHS</th>
<th>Prevalence of TB per 100,000 populations in Atse</th>
<th>Prevalence of TB per 100,000 populations in UOG</th>
<th>National Prevalence of TB per 100,000 populations in Maraki</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1830.1</td>
<td>171.3</td>
<td>0</td>
<td>347.3</td>
<td>579<sup>a</sup></td>
</tr>
<tr>
<td>2008</td>
<td>993.9</td>
<td>407</td>
<td>24.4</td>
<td>351.3</td>
<td>432<sup>b</sup></td>
</tr>
<tr>
<td>2009</td>
<td>379.2</td>
<td>406.7</td>
<td>187</td>
<td>297.6</td>
<td>406<sup>c</sup></td>
</tr>
<tr>
<td>2010</td>
<td>391.4</td>
<td>735.6</td>
<td>158.6</td>
<td>373.1</td>
<td>394<sup>d</sup></td>
</tr>
<tr>
<td>2011</td>
<td>523.1</td>
<td>659.6</td>
<td>214.4</td>
<td>404</td>
<td>273<sup>e</sup></td>
</tr>
</tbody>
</table>

TB=Tuberculosis, CMHS=College of Medicine and Health Sciences, UOG=University of Gondar, ANRS=Amhara National Regional State

^aWHO 2008, ^bWHO 2009, ^cWHO 2010, ^dWHO 2011, ^eWHO 2012
Table 4. Trend of TB type among students in the University of Gondar, 2007-2011, N=181

<table>
<thead>
<tr>
<th>Year</th>
<th>SP</th>
<th>SN</th>
<th>EP</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
<td>N (%)</td>
</tr>
<tr>
<td>2007</td>
<td>15 (45.5)</td>
<td>7 (21.2)</td>
<td>11 (33.3)</td>
<td>33 (100)</td>
</tr>
<tr>
<td>2008</td>
<td>8 (25)</td>
<td>16 (50)</td>
<td>8 (25)</td>
<td>32 (100)</td>
</tr>
<tr>
<td>2009</td>
<td>3 (9.7)</td>
<td>19 (61.3)</td>
<td>9 (29)</td>
<td>31 (100)</td>
</tr>
<tr>
<td>2010</td>
<td>7 (17.9)</td>
<td>21 (53.8)</td>
<td>11 (28.2)</td>
<td>39 (100)</td>
</tr>
<tr>
<td>2011</td>
<td>13 (28.3)</td>
<td>18 (39.1)</td>
<td>15 (32.6)</td>
<td>46 (100)</td>
</tr>
<tr>
<td>Total</td>
<td>46 (25.4)</td>
<td>81 (44.6)</td>
<td>54 (29.8)</td>
<td>181 (100)</td>
</tr>
</tbody>
</table>

TB=Tuberculosis, N=Number, SP=Smear positive pulmonary tuberculosis, SN=Smear negative pulmonary tuberculosis, EP=Extra-pulmonary tuberculosis
Table 5. Trend of TB treatment outcome and TSR among students in University of Gondar in comparison to the national TSR, 2007-2011, N=181

<table>
<thead>
<tr>
<th>Year</th>
<th>Treatment outcome</th>
<th>TSR(%)</th>
<th>TSR in in</th>
<th>Ethiopia in UoG</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TC N (%)</td>
<td>C N (%)</td>
<td>TO N (%)</td>
<td>F N (%)</td>
</tr>
<tr>
<td>2007</td>
<td>15 (45.5)</td>
<td>7 (21.2)</td>
<td>10 (30.3)</td>
<td>1 (3)</td>
</tr>
<tr>
<td>2008</td>
<td>21 (65.6)</td>
<td>5 (15.6)</td>
<td>4 (12.5)</td>
<td>1 (3.1)</td>
</tr>
<tr>
<td>2009</td>
<td>16 (51.6)</td>
<td>2 (6.5)</td>
<td>12 (35.7)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>2010</td>
<td>20 (51.3)</td>
<td>3 (7.7)</td>
<td>10 (25.6)</td>
<td>1 (2.6)</td>
</tr>
<tr>
<td>2011</td>
<td>19 (41.3)</td>
<td>19 (41.3)</td>
<td>5 (10.9)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>91 (50.3)</td>
<td>36 (19.9)</td>
<td>41 (22.7)</td>
<td>3 (1.7)</td>
</tr>
</tbody>
</table>

TB=Tuberculosis, TSR=Treatment success rate, N=Number, TC=Treatment completed, C=Cured, TO=Transferred out, F=Failure, D=Defaulted