Factors influencing general practitioner referral of patients developing end-stage renal failure: A standardised case-analysis study

Anthony J Montgomery, Hannah M McGee, William Shannon, John Donohoe

Anthony J Montgomery, Senior Lecturer in Behavioural Science
Royal College of Surgeons in Ireland-Medical University of Bahrain
Kingdom of Bahrain: amontgomery@rcsi-mub.com

Hannah M McGee, Professor of Psychology
Health Service Research Centre, Department of Psychology,
Royal College of Surgeons in Ireland, Dublin 2, Ireland
hmcgee@rcsi.ie

William Shannon, Professor of General Practice
Department of General Practice,
Royal College of Surgeons in Ireland, Dublin 2
wshannon@pmc.edu.my

John Donohoe, Consultant Nephrologist
Department of Renal Medicine,
Beaumont Hospital, Dublin 9
johndonohoemd@eircom.net

Corresponding author: All correspondence should be addressed to Dr. Anthony Montgomery,
RCSI Medical University of Bahrain, PO Box 15503, Kingdom of Bahrain,
amontgomery@rcsi-mub.com, Ph: +973-17583500 ext. 229, Fax: +973-17583600
Abstract

Title: Factors influencing general practitioner referral of patients developing end-stage renal failure (ESRF)

Background: To understand why treatment referral rates for ESRF are lower in Ireland than in other European countries, an investigation of factors influencing general practitioner referral of patients developing ESRF was conducted.

Method: Randomly selected general practitioners (N=51) were interviewed using 32 standardised written patient scenarios to elicit referral strategies. Main outcome measures: General practitioner referral levels and thresholds for patients developing end-stage renal disease; referral routes (nephrologist vs other physicians); influence of patient age, marital status and co-morbidity on referral.

Results: Referral levels varied widely with the full range of cases (0-32; median = 15) referred by different doctors after consideration of first laboratory results. Less than half (44%) of cases were referred to a nephrologist. Patient age (40 vs 70 years), marital status, co-morbidity (none vs rheumatoid arthritis) and general practitioner prior specialist renal training (yes or no) did not influence referral rates. Many patients were not referred to a specialist at creatinine levels of 129:\text{\mu mol/l} (47\% not referred) or 250:\text{\mu mol/l} (45\%). While all patients were referred at higher levels (350 and 480:\text{\mu mol/l}), referral to a nephrologist decreased in likelihood as scenarios became more complex; 28\% at 129:\text{\mu mol/l} creatinine; 28\% at 250:\text{\mu mol/l}; 18\% at 350:\text{\mu mol/l} and 14\% at 480:\text{\mu mol/l}. Referral levels and routes were not influenced by general practitioner age, sex or practice location. Most general practitioners had little current contact with chronic renal patients (mean number in practice = 0.7, s.d. = 1.3).

Conclusion: The very divergent management patterns identified highlight the need for guidance to general practitioners on appropriate management of this serious condition.
Introduction

Historically, the provision of renal replacement therapy for end-stage renal disease in Ireland (57.8 new cases per million population in 1994) [1] has been lower than the internationally recommended rate (80 per million population)[2]. Moreover recent data suggests that while Ireland compares favorably with European averages in regard to Transplant treatment (353 per million population versus EU average 185 per million population), Irish dialysis rates [3] still lag behind the European average [4](303 per million population versus EU average of 400 per million population). This all suggests that Irish treatment rates may indicate under-referral of patients with end-stage renal disease. Increases in treatment rates in the United Kingdom [5] have been achieved by increasing referrals of appropriate cases from primary care services. A number of factors may influence referral rates. In a standardised case study (with co-morbidity held constant), Canadian physicians referred significantly fewer older patients [6]. In a similar study format, British general practitioners referred fewer end-stage renal disease patients when compared with British nephrologists [7]. The issue of under-referral may be compounded by late referral which also represents an important element of the referral process. For example, a survey in Canada, the United States and the UK showed that family physicians referred patients at a serum creatinine of between 260 and 340 mmol/L regardless of patient age, whereas most nephrologists would prefer to accept referrals at lower serum creatinines [8]. For example, the guidelines of the UK Renal Association [9] indicate that all patients with a creatinine between 150-200mmol/L should be referred to a specialist. Similarly, a European study investigating the optimal time for a first referral to a nephrologist found substantial differences between diabetes experts and nephrologists [10].

Under-referral or late referral has important healthcare management implications. Ultimately, the consequences of late referral of patients includes increased mortality and morbidity [11], increased cost and duration of hospitalization [12], increase need for urgent dialysis [13] and reduced access to renal transplantation services [14]. A recent review of the literature [15] concluded that late referral leads to suboptimal management of complications of chronic renal insufficiency, and thus increased morbidity and mortality of patients on renal replacement therapy.

The aim of this study was to examine decision-making strategies of general practitioners regarding referral for renal replacement therapy in order to provide information on clinical, demographic and service-related factors influencing levels and patterns of referral. Since episodes of patients developing renal failure presenting in general practice are relatively rare, standardised case analysis was used as the method of examining what is likely to happen in actual general practice. Provided that realistic cases are constructed, such written simulations
are regarded as suitable for measuring clinical judgements and elucidating the decision making process [16,17]. For instance, standardised case analysis has been demonstrated to be an acceptable method of approximating actual clinical practice for general practitioners (respiratory illness [18] and gastroenteritis [19]) and for specialists (rheumatologists [20]). The main outcomes measures were general practitioner referral levels, thresholds for patients developing end-stage renal disease, referral routes and influence of patient age, marital status and co-morbid condition on referral.

Method

General practitioners were randomly selected from an urban and a rural setting. The rural setting was selected to represent typical general practice distances from a major renal centre. Members of the Irish College of General Practitioners were invited by letter and follow-up telephone call to take part in an interview study. Following this, each participating GP was visited by the first author who conducted a structured interview using the standardized case developed by the researchers.

A total of 79 general practitioners were randomly identified from area listings. Eight general practitioners were unable to take part as they were on holiday during the research period. A further 6 general practitioners could not be contacted by phone. Of 31 urban general practitioners contacted 25 participated in the study (81% response rate), while 26 of the 27 rural general practitioners participated (96% response rate).

Interviews comprised two parts:

a) Case scenarios depicting patients in varying stages of renal failure presenting in general practice. Cases were developed by a general practitioner and nephrologist. They comprised clinical information representing a ‘moderate’ and ‘severe’ renal failure profile. Cases were developed as a series of successive general practitioner consultations with laboratory investigation outcomes available where requested. Moderate cases comprised of a patient presenting with symptoms which are associated with relatively low initial creatinine level; 129µmol/l increasing to 350µmol/l after a second visit. Equivalent levels in the severe scenarios were 250µmol/l and 480µmol/l. Cases also differed in demographic and co-morbidity criteria - age of patient (40 vs 70 years), marital status (single vs married) and co-morbidity (inactive rheumatoid arthritis vs no co-morbidity). This design provided 32 case combinations (see example, fig. 1).
b) Questions on general practitioner demographic profile and training and current experience with renal disease.

Results

General practitioners (43 men/8 women) averaged 50 years old (s.d. = 9) with a mean practice size of 2.3 (s.d. = 2.3) partners. Practices were located a median of 15 miles (range = 1-65) from the nearest dialysis centre. General practitioners reported little current contact with renal patients; 90% of general practitioners had ≤ 1 hemodialysis, 96% had ≤ 1 continuous ambulatory peritoneal dialysis and 79% had ≤ 1 transplant patients in their practice.

Figure 2 outlines general practitioner referral routes by level of creatinine. While almost all patients were referred at higher levels (350 and 480µmol/l), referral to a nephrologist decreased in likelihood as the scenarios became more complex, including having higher creatinine levels.

The majority of patients (99%) were referred to a specialist at some point; 46% were referred after the first set of laboratory test results were available. Most were referred to either a nephrologist or a general physician (table 1).
There was no age difference in referral patterns with older patients referred as often to a nephrologist as younger patients (chi-square = 0.73), similarly there were no referral rate difference between severe cases and moderate cases (chi-square = 1.30).

Referral levels varied widely with the full range of cases (0-32; median = 15) referred by different general practitioners after first laboratory results were available. Referral rates did not differ by general practitioner according to sex, practice size or current experience with renal patients. One-way analysis of variance indicated a significant interaction between general practitioner training experiences and referral rates; (a) general practitioners who had trained on a renal team (14% of general practitioners), (b) general practitioners who had no specific renal experience in training (60%) and (c) general practitioners who, while not training on a renal team, had some hospital experience with renal patients (26%). Scheffe post hoc comparisons indicated no significant differences between GPs with differing experiences.

Conclusions

Previous studies have examined reported referral levels to consultants [8-9], but have not focused on differences across general practitioners in their reported referral strategies. Referral across the complete range of cases presented, with no influence of age, marital status or clinical severity, illustrates that no consensus exists about an optimal referral strategy. Such a result is consistent with similar vignette-based research that found substantial variation in dialysis decision making among consultant nephrologists in Northern Ireland [21].

A large proportion of patients were not referred to a specialist at creatinine levels of 129 or 250\(\mu\)mol/l. General practitioner characteristics such as sex, practice size or training experiences, also did not influence referral. The lack of influence of factors such as age, marital status or co-morbidity on case referral is encouraging given evidence that older age and co-morbidity have been associated with lower rates of referral elsewhere [22] and given recommendations that these should not be contraindications to treatment [2]. However creatinine levels of 250\(\mu\)mol/l (case 2) are approaching chronic renal failure levels (\(\geq\) 300 \(\mu\)mol/l) [23] yet only 55% of these cases would be referred on to any specialist. These data indicate under-referral of cases for specialist attention in the light of significant renal impairment. For instance, at a serum creatinine level of 120-150\(\mu\)mol/l, as much as 50% of filtration function has already been lost [6] in 46% of cases.
Regarding the influence of creatinine level on referral patterns of general practitioners, referral to a nephrologist decreased in likelihood as the scenarios became more complex. Levels of creatinine ≥ 300µmol/l are defined as chronic renal failure with 500µmol/l defining advanced chronic renal failure [14]. Yet in case 1, at creatinine levels of 350µmol/l only 39% of patients still in general practice care (18% of the 46% remaining) would be referred to a nephrologist. In case 2, at levels of 480µmol/l only 31% of such patients (14% of the 45% remaining) would be sent directly to a nephrologist. The imperative to tackle late referral is underlined by estimates that suggest that 25% to 50% of patients worldwide who commence renal replacement therapy are referred late to a nephrology service [23]. Early referral helps to optimize health care use and patient management [15], and enables the identification of patients at risk of rapid deterioration in renal function and/or complications such as anemia, hypertension and cardiovascular disease. Finally, general practitioners referred across a range of specialties indicating that delayed referral may also be an issue.

Consideration of the divergent management patterns observed prompt a number of reflections. It is worth noting that the active management of renal failure by dialysis is a medical innovation of the latter half of the twentieth century as such the study population may have experienced the majority of their training in a hospital based setting. Indeed, the low number of nephrologists available (10 in 1996 in Ireland) may also have influenced the referral strategies of GP’s. Additionally, it is possible that GPs and patients may together decide to take a more stoic approach to their symptoms in the mistaken belief that “nothing much can be done”. This may particularly true for patients who viewed trips to major centre as onerous. Finally, the results may be a reflection of the fact that GPs are a very “mixed bag”, who found it difficult to keep up-to-date and rely heavily on hard-won personal clinical experience.

Accepting the limitations of these research findings because of the reliance on ‘paper-case’ scenarios and reported behaviours, the study did find a pattern of under-referral and/or late-referral with reference to clinical definitions of chronic and advanced renal failure. This reported practice is consistent with a reported patient referral rate in Ireland which is 30 patients fewer than the European Union average (88.3 per million [1]). While published guidelines advocate early diagnosis and prompt treatment of renal disease [2], it is not clear at what point direct referral to a nephrologist is the most efficient management strategy for patients with renal difficulties. What is clear from the reports of practice in this study is that a significant proportion of patients presenting with symptoms of chronic renal failure would not be referred to a specialist. The very divergent management patterns identified across practitioners highlights the need for guidance to general practitioners on appropriate management including referral criteria and thresholds and on appropriate referral routes in order to improve management of this increasingly common, complex and severe medical
condition. Earlier referral has the potential to optimise patients care and reduce the costs of managing patients with ESRF. One potential way to promote the earlier referral of patients with chronic renal failure is the adoption of the glomerular filtration rate (GFR) as a measurement of kidney function. This new classification of kidney disease, launched by the American Kidney Foundation [24], is based on estimated GFR calculated from serum creatinine, age and sex. This is in many countries now being reported directly to primary care, and is considered a better indicator for detecting poor renal function than is serum creatinine on its own [25]. Ongoing monitoring of general practitioner referral patterns is needed to ensure that such developments translate into appropriate referral from primary care for this serious but manageable medical condition.

Authors Contributions:
AM contributed to the design of the study, collected the data and drafted the manuscript
HMcG designed the study and contributed to the writing of the study
WS and JD developed the standardized case scenarios, and contributed to the writing of the study

Acknowledgements

The authors gratefully acknowledge the assistance of Dr. Peter Harrington and Dr. Colin Mitchell (Wexford Branch; Irish College of General Practitioners); Dr. Ruwani Siriwardena, Dr. Brendan Clune, Mr. Ronan Conroy and Mr. Gary Prentice, Royal College of Surgeons in Ireland; Dr. Edmund O’Riordan, Beaumont Hospital, Dublin, Professor Brian Keogh, Adelaide and Meath Hospital and Mrs. Patricia Doherty, Irish Kidney Association.

Funding: Irish Kidney Association
Conflict of interest: none
REFERENCES

3. Plant L, Jameson, E. Retrospective census of prevalent ESKD patients. Faculty Audit, Beaumount Hospital, Dublin, Ireland, 2004).

11. Lorenzo V, Martin M, Rufiono M et al. Predialysis nephrologic care and a functioning arteriovenous fistula at entry are associated with better survival in incident

<table>
<thead>
<tr>
<th>Patient characteristic</th>
<th>Nephrologist</th>
<th>General Physician</th>
<th>Urologist</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cases</td>
<td>44%</td>
<td>37%</td>
<td>7%</td>
<td>11%</td>
</tr>
<tr>
<td>Younger patient (age 40)</td>
<td>47%</td>
<td>36%</td>
<td>7%</td>
<td>10%</td>
</tr>
<tr>
<td>Older patient (age 70)</td>
<td>41%</td>
<td>39%</td>
<td>7%</td>
<td>13%</td>
</tr>
<tr>
<td>Moderate symptoms</td>
<td>40%</td>
<td>42%</td>
<td>6%</td>
<td>12%</td>
</tr>
<tr>
<td>Severe symptoms</td>
<td>48%</td>
<td>32%</td>
<td>8%</td>
<td>12%</td>
</tr>
</tbody>
</table>

*1% of patients not referred to specialists; Moderate symptoms = 129 to 350 µmol/l creatinine, Severe symptoms = 250 to 480 µmol/l creatinine
List of figures

Figure 1 Standardised patient scenario

Figure 2 General practice referral routes by creatinine level
Figure 1

Referral level

VISIT 1
- age
- marital status
- comorbid conditions
- symptoms: malaise, ankle swelling, dysuria
- blood pressure 140/90

CLINICAL TESTS 1
- Urea: 7.6 mmol/l (moderate case) - 12 mmol/l (severe case)
- Creatinine: 129 µmol/l (moderate case) - 250 µmol/l (severe case)
- Potassium: 4.7 mmol/l
- Hemoglobin: 11.5 g/dL
- Total Protein: 78 g/L
- ESR: 24 mm/hr
- Albumin: 28 g/l
- Calcium: 2.02 mmol/l
- 2+ blood
- 2+ protein
- 0 glucose
- 0 nitrate

VISIT 2
- Patient has deteriorated
- ankle swelling
- pruritus
- grade 2 hypertensive retinopathy
- ++ ankle oedema
- bilateral creps to mid-zones

CLINICAL TESTS 2
- Urea: 7.6 mmol/l (moderate case) - 20 mmol/l (severe case)
- Creatinine: 350 µmol/l (moderate case) - 480 µmol/l (severe case)
- Potassium: 4.7 mmol/l
- Hemoglobin: 11.5 g/dL
- Total Protein: 78 g/L
- ESR: 24 mm/hr
- Albumin: 28 g/l
- Calcium: 2.02 mmol/l
- 2+ blood
- 2+ protein
- 0 glucose
- 0 nitrate

Figure 1
Figure 2

Referrals

1st Lab. test results
creatinine = 129\mu mol/l

CASE 1
(N=811)

- 28% nephrologist
- 13% general physician
- 7% urologist
- 5% other
- 47% not referred
- 100%

2nd Lab. test results
creatinine = 350\mu mol/l

- 18% nephrologist
- 18% general physician
- 3% urologist
- 7% other
- 1% not referred
- 47%

Referrals

1st Lab. test results
creatinine = 250\mu mol/l

CASE 2
(N=821)

- 28% nephrologist
- 14% general physician
- 8% urologist
- 5% other
- 45% not referred
- 100%

2nd Lab. test results
creatinine = 480\mu mol/l

- 14% nephrologist
- 24% general physician
- 2% urologist
- 5% other
- 0% not referred
- 45%