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Abstract

Background: Imputation of partially missing or unobserved genotypes is an indispensable tool for SNP data
analyses. However, research and understanding of the impact of initial SNP-data quality control on imputation
results is still limited. In this paper, we aim to evaluate the effect of different strategies of pre-imputation quality
filtering on the performance of the widely used imputation algorithms MaCH and IMPUTE.

Results: We considered three scenarios: imputation of partially missing genotypes with usage of an external
reference panel, without usage of an external reference panel, as well as imputation of completely un-typed SNPs
using an external reference panel. We first created various datasets applying different SNP quality filters and masking
certain percentages of randomly selected high-quality SNPs. We imputed these SNPs and compared the results
between the different filtering scenarios by using established and newly proposed measures of imputation quality.
While the established measures assess certainty of imputation results, our newly proposed measures focus on the
agreement with true genotypes. These measures showed that pre-imputation SNP-filtering might be detrimental
regarding imputation quality. Moreover, the strongest drivers of imputation quality were in general the burden of
missingness and the number of SNPs used for imputation. We also found that using a reference panel always
improves imputation quality of partially missing genotypes. MaCH performed slightly better than IMPUTE2 in
most of our scenarios. Again, these results were more pronounced when using our newly defined measures of
imputation quality.

Conclusion: Even a moderate filtering has a detrimental effect on the imputation quality. Therefore little or no SNP
filtering prior to imputation appears to be the best strategy for imputing small to moderately sized datasets. Our
results also showed that for these datasets, MaCH performs slightly better than IMPUTE2 in most scenarios at the
cost of increased computing time.

Keywords: Genotype imputation, Pre-imputation filtering, SNP quality control, Genome-wide association analysis,
SNP data
Background
Imputation of missing genotype data is routinely used
in current genetic data analyses. Here, we focus on the
pre-imputation filtering process of SNPs which can be
measured conveniently by many micro-array products or
by sequencing techniques. There are three major scenarios
in which imputation is usually applied: First, imputation
can be used to fill the gaps of missing genotypes or to
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correct for genotyping errors in a self-content SNP dataset
without an external reference panel (“hole filling without
an external reference panel”). The second scenario is simi-
lar to the first, but a reference panel is used during the
imputation process (“hole filling with an external refer-
ence panel”). The third scenario concerns with imputation
of SNPs un-typed in all individuals (“entire SNP imput-
ation”). Here, an external reference panel is mandatory.
The latter scenario is typically relevant in genome-wide
meta-analysis in order to combine datasets of different
genotyping platforms comprising different subsets of
SNPs. Another popular application for this scenario is to
impute additional markers not available at any genotyping
platforms, e.g. those retrieved from sequencing data. It
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has been shown that this approach might increase the
power of genome-wide association studies [1,2]. Promin-
ent reference panels such as HapMap [3] and 1000
Genomes [4] are available for imputation purposes in
different ethnicities.
A number of tools for genotype imputation were

developed in the past such as MaCH [5], IMPUTE1
and IMPUTE2 [6,7], BIMBAM [8], BEAGLE [9-11], and
PLINK [12]. Implemented algorithms are based on model-
ling the haplotype structure of the population in different
ways. A review of imputation software, implemented
methods and comparisons of performance can be found
in [13,14]. While performing genotype imputation with
any of these programs, an unavoidable biometrical ques-
tion is how to deal with markers of low genotyping qual-
ity. Before analyzing any association with genetic markers,
genotype data are usually filtered by a sequence of quality
control (QC) steps. Typical criteria for filtering at SNP
level are low call rate (CR), concordance with Hardy-
Weinberg equilibrium (HWE) and low minor allele fre-
quency (MAF). Current practice suggests that reliable
statistical inference of SNPs can be achieved through
imputation after removing bad quality SNPs (and indi-
viduals) from a given dataset [15-19]. Commonly used
cut-offs for the SNP filtering criteria are [18,20,21]:
MAF > 1–5%, HWE p-value > 10−6 - 10−4, and SNP call
rate >90–99%. However, there is no common agreements
regarding the cut-offs; and those recommendations mainly
result from the standards used in genetic association
analysis, but not from a dedicated analysis related to the
impact of SNP-quality filtering on the imputation result.
Indeed, filtering of genotypes may reduce accuracy of
imputation results. Imputation algorithms typically ex-
ploit the linkage disequilibrium (LD) structure between
markers, and consequently, imputation accuracy depends
on the strength of LD between missing and available
genotypes [10]. When filtering SNPs before imputation,
LD structure between markers is thinned down. Hence,
the relative merit of pre-imputation filtering of low quality
SNPs is still debatable.
Southam et al. [22] recently suggested that imputation

of common variants is rather robust to genotype quality.
However, this conclusion was drawn on the basis of ana-
lyses performed only for a single imputation software and
limited to the scenario “entire SNP imputation”.
In the present paper, we aim to fill this gap assessing

the impact of SNP quality control on imputation accuracy
for IMPUTE2 and the software MaCH. Both programs
are among the most frequently applied imputation
software. Additionally, we introduce and apply two new
scores to assess imputation quality with improved cha-
racteristics. Most currently available imputation quality
scores are defined only at SNP-wise level, therefore, they
are of limited use for comparisons at genotype level. An
existing measure at genotype level is to compare concord-
ance of the best-guess imputed genotype with the known
genotype. However, this does not take into account the
posterior probabilities of imputed genotypes. As another
disadvantage, most currently available measures are spe-
cific for the imputation software used. To overcome all
these limitations, we defined new scores applicable at
genotype level, which are platform independent and which
can take posterior probabilities into account. Finally, we
consider imputation scenarios not addressed before [22],
including hole filling with and without an external refer-
ence panel.

Methods
Data sets
We studied 100 German individuals collected in a close
area in Saxony and Thuringia. Individuals are a subset of
a cohort of an ongoing study regarding genetics of dys-
lexia [23,24]. 65 individuals were males. Ethical approval
was obtained from the Ethics Committee of the University
of Leipzig. The regional school council Leipzig approved
access to study participants in schools. Informed and writ-
ten consent was obtained from each parent. Individuals
were genotyped using Genome-Wide Human SNP Array
6.0 (Affymetrix, Inc., Santa Clara, California, USA). Gen-
omic DNA from these individuals was extracted from
blood and saliva using standard silica-based methods
and extraction as described by the manufacturer (DNA
Genotek, Ottawa, Ontario, Canada and Qiagen, Hilden,
Germany), respectively. Integrity of genomic DNA was
verified applying agarose gel electrophoresis. Array pro-
cessing was carried out as a service by the genome
analysis centre (Helmholtz-Zentrum München, Munich,
Germany). Genotypes were called using the birdseed
version 1 algorithm [24] implemented in the Affymetrix
Genotyping Console software version 4.0, with standard
settings. Genotype calling was improved by including add-
itional reference individuals. Overall call rate was between
94.6% and 99.3% with a mean and median call rate of
98.3% and 98.45%, respectively. Included samples passed
all technical array-wide quality control criteria as imple-
mented in Genotyping Console (Bounds, Contrast QC,
Contrast QC (Random), Contrast QC (Nsp), Contrast QC
(Nsp/Sty Overlap), and Contrast QC (Sty) had to be larger
than 0.4).
Only unrelated individuals were studied, i.e. it holds

that p-Hat < 0.05 for all pairs of individuals as calculated
by PLINK [12] on the basis of our genome-wide data.
Analysis of population stratification was based on 30,501
independent SNPs. Applying the EIGENSTRAT method
[25] revealed no evidence for population stratification.
Clustering of first principal components of our samples
resulted in a homogenous distribution which partly over-
laps with those of HapMap individuals of Caucasian



Figure 1 Venn-Diagram describing the intersection of SNP
datasets filtered by different quality criteria. Note that by
definition, HQ is contained in every subset.
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descendant (HapMap CEU, Additional file 1: Figure S1).
Fst indicated close relation between HapMap CEU
and our sample (Fst = 0.00062, calculated with software
Arlequin 3.5.1.3 [26]).

SNP data subsets used for analysis
All SNPs (in total 9,602) genotyped on chromosome 22
were studied. SNP data subsets with variable SNP quality
were defined in order to test their performance in the
imputation process. Based on various levels of MAF, CR
and p-values of HWE test (as calculated by PLINK), we
defined three basic subsets based on quality-filtering
criteria namely: high quality (HQ), normal quality (NQ),
low quality (LQ): Subset ‘HQ’ was generated using highly
stringent HQ-criteria: MAF ≥ 0.1, CR = 1, and p(HWE) ≥
0.01. For these SNPs, we assume a high confidence of
genotype calling. This judgment is based on published
data [27] and on our own investigations (unpublished
data) showing that the probability of genotyping error is
less than 1% for these SNPs. The main approach to assess
imputation quality in our study is first to mask a certain
percentage of HQ genotypes, and then to compare the
masked genotypes with corresponding results of the im-
putation process. Data subset NQ was created according
to the recommendation of MaCH developers [16]. Here,
SNPs were filtered by applying the criteria: MAF ≥ 0.01,
CR ≥ 0.95, and p(HWE) ≥ 1×10−6. These criteria are also
often applied in various GWA studies [15,20,21] for pre-
imputation filtering process. The criteria used to create
LQ-subset was defined by further relaxing the NQ-
criteria: MAF > 0.005, CR ≥ 0.5, and p(HWE) ≥ 1×10−12.
Data subset BQ was constructed by enriching SNPs of
particularly low genotyping quality. It consists of all SNPs
disqualified by the NQ criteria and all HQ SNPs. Finally,
we called the scenario without any type of filtering as
“ALL”. It is worthy to mention here that HQ SNPs were
included in all of our data subsets which allows us com-
paring imputation results on the basis of this overlapping
set of highly confident genotypes. Intersections of defined
SNP datasets are illustrated as Venn-Diagram in Figure 1.
In order to investigate the impact of filtering with single

quality criteria, we also considered scenarios based on the
application of just one or two of the above mentioned
criteria of MAF, CR and p(HWE). The results of these
scenarios are presented as supplement material. In sum-
mary, a total of 16 scenarios were considered (Table 1).

Masking of SNPs
Imputation quality is assessed by comparing masked HQ
genotypes with corresponding imputation results. For
this purpose, in the scenarios “hole filling without any
reference panel” and “hole filling with an external refer-
ence panel” different percentages (10, 20 and 50%) of
randomly selected genotypes of HQ SNPs were masked
and afterwards imputed with and without the HapMap
CEU reference panel. In the scenario “entire SNP-imput-
ation”, randomly selected percentages (10, 20 and 50%) of
HQ SNPs were completely masked and the masked SNPs
were again imputed using the HapMap CEU reference
panel.
Masking of genotypes was performed in such a way

that SNPs/genotypes masked in a dataset with a lower
percentage of masked SNPs/genotypes were also masked
in datasets with a higher percentage of masked SNPs/
genotypes. Hence, the SNPs/genotypes masked in the
datasets with 10% masking are also masked in all data-
sets of a higher percentage of masking and so on. This
approach allows us to compare datasets with different
percentages of missingness on the basis of an overlap-
ping subset of masked SNPs. The different percentages
of missingness were analyzed for all 16 scenarios of pre-
imputation SNP filtering.

Imputation methods
For imputation of masked SNPs, we applied the software
tools MaCH1.0 [5] and IMPUTE v2.1.2 [6] following
best practice guides of the authors. Formats of genotype
data required by MaCH and IMPUTE were created by
“fcGENE”, a format converting tool developed by our
group. This tool is based on C/C++ and is freely available
on Sourceforge website [28].
For imputation with MaCH1.0, 100 iterations of the

Hidden Markov Model (HMM) sampler were applied
with a maximum of 200 randomly chosen haplotype sam-
ples. MaCH commands are provided as supplemental
material. In case of imputation with HapMap reference
(HapMap3 NCBI Build 36, CEU panel), we applied the
recommended two step imputation process [5,16]. More
precisely, model parameters of the underlying Hidden-



Table 1 Description of scenarios of pre-imputation SNP filtering: Note that datasets contain different numbers of SNPs

Data subset Number of SNPs Quality criteria for SNPs contained in the data subsets

HQ 4658 high quality : criteria MAF≥ 0.1, CR = 1 and p(HWE) ≥ 10− 2

NQ 7923 Normal quality : MAF≥ 0.01, CR≥ 0.95 and p(HWE) ≥ 10− 6

LQ 8472 low quality: MAF≥ 0.005, CR≥ 0.5, p(HWE) ≥ 10− 2

NQ.MAF 8310 MAF≥ 0.01

NQ.HWE 9547 p(HWE) ≥ 10− 6

NQ.CAR 9194 CR≥ 0.95

HQ.MAF 6344 MAF≥ 0.1

HQ.HWE 9450 p(HWE) ≥ 10− 2

HQ.CAR 7148 CR = 1

NQ.MAF.HWE 8255 MAF≥ 0.01, p(HWE) ≥ 10− 6

HQ.MAF.HWE 6261 MAF≥ 0.1, p(HWE) ≥ 10− 2

LQ.MAF 8520 MAF≥ 0.005

LQ.HWE 9574 p(HWE) ≥ 10− 12

LQ.MAF.HWE 8492 MAF≥ 0.005, p(HWE) ≥ 10− 12

BQ 6337 This data subset contains SNPs which fail NQ criterion and HQ

ALL 9602 This data subset contains all available SNPs.

We focus on the scenarios in bold. Results of all scenarios can be found in the supplement material.
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Markov model were estimated by running the “greedy”
algorithm. During the first step of the algorithm, both,
genotyping error rates and cross-over rates were estima-
ted. The second step exploits these parameters to impute
all SNPs of the reference panel. When comparing imput-
ation quality between the different filtering scenarios with
the help of our newly proposed measures, we used the
posterior probabilities contained in the MaCH output files
with extension “.mlgeno”.
As recommended by IMPUTE developers [6,17,29,30],

we performed segmented-imputation of chromosome 22
by defining different genomic intervals approximately of
size 5 MB. To avoid margin effects of chromosome seg-
mentation, IMPUTE2 uses an internal buffer region of
250 kb on either side of the analysis interval after apply-
ing the option –buffer <250 > [17]. CEU HapMap refer-
ences (HapMap3 NCBI Build 36) down-loaded from the
official website of IMPUTE [17] were used for the imput-
ation scenarios requiring a reference panel. More pre-
cisely, genetic recombination rates, reference haplotypes
and the legend file were used as provided on the website.
Command options and parameters used to run MaCH

and IMPUTE2 are provided in detail in the supplement
material. Throughout all scenarios considered we always
used the settings as described above. Reference files used
for MaCH and IMPUTE2 contained exactly the same
SNPs (M = 20,085).

Assessment of imputation quality
Imputation results were assessed by two different ap-
proaches: First, we used the platform-specific measures
of imputation uncertainty for each SNP as recom-
mended by the developers of MaCH (rsq Score) and
IMPUTE2 (info score). Second, we also considered
two novel software-independent measures allowing a
direct comparison of the observed genotype and the
posterior distribution of the genotype, namely Hellinger
score and the Scaled Euclidian Norm score (SEN score) as
defined below.

a) SNP-wise measures implemented in MaCH (rsq) and
IMPUTE (info)
MACH-rsq score equals the ratio of the empirically
observed variance of the allele dosage to the expected
binomial variance p(1-P) at Hardy–Weinberg equilibrium,
where p is the observed allele frequency derived from
HapMap or estimated from own data [31]. Its value tends
to zero if the uncertainty of the imputation results in-
creases. If certainty of imputed genotypes is high, this ratio
is close to 1. MaCH developers recommend a threshold of
at least 0.3 for reliable imputation results [16].
The IMPUTE info score is a similar measure which is

based on the relative information of the observed geno-
type distribution compared to the complete distribution
[7]. A threshold of 0.3 is recommended.
Both, MaCH-rsq and IMPUTE info score calculate

uncertainty of imputation results on a SNP-wise level.
Hence, they do not allow direct comparison of imputed
and observed individual genotypes, and thus are of little
use for the hole-filling scenarios. Due to different defini-
tions, these two scores cannot be compared with each
other directly. To overcome these limitations, two new
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measures were applied to assess the agreement of single
observed and imputed genotypes.

b) Direct comparison of known and imputed genotypes
Suppose that any genotype of a SNP is encoded numer-
ically with the values {0, 1, 2}, where 0 and 2 denotes ho-
mozygotes with major allele and minor allele respectively
and 1 codes heterozygotes. Let O be the set of masked
observed genotypes. Consider a single genotype g ∈O, let
f1(g) and f2(g) respectively be the trinomial probability
densities of the true genotype at g and the genotype
proposed by the imputation software, respectively. The
original true genotype probability f1(g) can be described as

f 1 gð Þ ¼ p11; p12; 1− p11 þ p12ð Þð Þ
where

p11; p12; 1− p11 þ p12ð Þð Þ¼
1−εð Þ2; 2ε 1−εð Þ; ε2� �

if g ¼ 0
ε 1−εð Þ; 1−εð Þ2 þ ε2; ε 1−εð Þ� �

if g ¼ 1
ε2; 2ε 1−εð Þ; 1−εð Þ2� �

if g ¼ 2

8><
>:

and parameter ε is the probability of genotyping errors.
Since we masked only HQ SNPs and compared them
with the corresponding imputed values, we set the geno-
typing error rate as ε = 0 in the following.
Similarly, f2(g) can be defined as

f 2 gð Þ ¼ ~p11; ~p12; 1− ~p11 þ ~p12ð Þð Þ
where ~p11 and ~p12 are the posterior probabilities of

genotypes for g received by the imputation process.
Based on these distributions relating to original and
imputed genotypes respectively, we define two scores of
imputation quality as follows.

Hellinger score
For two trinomial probability distributions f1(g) and f2(g),
the Bhattacharyya coefficient which measures the amount
of overlap between the two distributions [32] is defined as

B gð Þ ¼
X3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i1 gð Þf i2 gð Þ

q

where “i” denotes the components of the corresponding
vectors. A modified version of Bhattacharyya coefficient
is the Hellinger score, which is a measure of the distance
of two probability distributions [33]:

H gð Þ ¼ 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−
X3
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f i1 gð Þf i2 gð Þ

qvuut
Here, the measure is equal to one if the probability

distributions coincide and zero if probability vectors are
perpendicular. Note that the Hellinger score is equal to
one minus the Hellinger distance.
Scaled Euclidian Norm score (SEN score)
As an alternative, one can calculate the Euclidian dis-
tance between the genotype-wise expectations of the
two distributions. Let

Mobs ¼ 0⋅p11 þ 1⋅p12 þ 2 1− p11 þ p12ð Þ½ � ¼ 2− p12 þ 2p11ð Þ

Mimp ¼ 0⋅~p11 þ 1⋅~p12 þ 2 1− ~p11 þ ~p12ð Þ½ � ¼ 2− ~p12 þ 2~p11ð Þ

be the expectations of the observed distribution (f1(g))
and the posterior distribution after imputation (f2(g)),
then one can define the Scaled Euclidian Norm score
(SEN score) by

S ¼ 1−
Mobs−Mimp
� �2

4

 !

This score was constructed in a way that it ranges
between 0 and 1. The greater the score, the better the
corresponding genotype is imputed. In contrast to
Hellinger score, SEN score only assesses the agreement of
the allele doses derived from the distributions, whereas
the Hellinger score can discriminate results with identical
allele doses but differing genotype probabilities. Both mea-
sures are useful for assessing imputation quality of both,
partially as well as completely imputed SNPs. They also
allow comparisons between different imputation plat-
forms like MaCH and IMPUTE2. To define a SNP-wise
or analysis-wide measure of imputation quality, the
scores can be averaged over all imputed genotypes of a
certain SNP or all SNPs included in the analysis,
respectively.

Comparison between scenarios
Different scenarios of quality filtering were considered
equally well suitable for imputation if resulting SNP-wise
quality scores were not significantly inferior compared to
the result of the best imputed scenario. We first compared
the five main scenarios namely ALL, NQ, HQ, BQ and
LQ. Results of additional scenarios given in Table 1 are
provided in the supplement material. To allow compari-
sons between scenarios of different percentages of masked
SNPs/genotypes, only the 10% overlapping masked SNPs
and genotypes in each scenario were considered. We
formally applied McNemar tests with Bonferroni-Holm
correction of multiple testing (N = 5 for the main analysis
and N = 16 when considering all scenarios) in order to
compare percentages of well imputed genotypes defined
on the basis of specified cut-offs for our newly defined
quality measures. Cut-offs for Hellinger score and SEN
score were chosen as 0.6 and 0.95 respectively. In our
data, a cutoff 0.6 for Hellinger score ensured that the
imputed best-guess genotype almost always matched the
true genotype and that its posterior probability is at least
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0.7. Therefore, this cut-off provides a high confidence that
the best guess genotype matches the true genotype. Simi-
larly, we observed that a SEN score greater or equal to
0.95 was indicative for the true genotype in almost
every case.
Similarly we compared the performances of MaCH

and IMPUTE2 by applying McNemar tests on Hellinger
and SEN scores dichotomized at the specified cutoffs.
Bonferroni corrected p-values with cutoff 0.05 were
used to decide whether MaCH or IMPUTE2 performs
better.
Performance regarding the software-specific measures

MaCH-rsq and IMPUTE-info was assessed using the
recommended cut-off of 0.3 for both measures.

Results
Hole-filling without external reference panel
In Table 2, we present the results of hole-filling without
external reference for both MaCH and IMPUTE2. Shown
are percentages of overlapping masked genotypes imputed
with a Hellinger score ≥0.6.
No single pre-processing method was optimal for all

analysed scenarios, however, either ALL or LQ performed
best. HQ is the dataset performing worst across all degrees
of missingness. Overall, rather than the quality of SNPs,
higher numbers of SNPs appeared to be associated with
higher imputation quality. Only BQ (enriched with parti-
cularly worse SNPs) showed only limited improvement
when comparing with the HQ dataset, although the
number of SNPs in BQ was considerably larger than
the number of SNPs in HQ. Therefore, our MAF filtering
scenarios (LQ.MAF, HQ.MAF, HQ.MAF.HWE) are excep-
tions of the observed general rule that lower numbers of
SNPs result in inferior imputation quality. This becomes
especially apparent if comparing the scenarios HQ.CAR
or BQ with the scenarios HQ.MAF or HQ.MAF.HWE.
Although the first two scenarios have similar or even
higher numbers of SNPs, the latter two show superior
imputation results (see Additional file 1: Table S1).
Table 2 Imputation quality of the scenario “Hole-filling witho
imputed with a Hellinger score ≥0.6 are presented

Datasets MACH Imputation score based on 10% ove
masked genotypes

Data subset name #SNPs 10% 20% 50%

ALL 9602 93.15* 92.29*+ 87.59*

LQ 8472 93.23*+ 92.23* 87.85*

NQ 7923 93.08* 92.09* 87.48*

BQ 6337 89.82* 88.24* 79.53*

HQ 4658 89.47* 87.71* 78.56*

Datasets of different pre-imputation quality filtering were considered and different
scenarios are described with (+). Results of the filtering scenarios which are not sign
letters. An asterisk (*) indicates whether MaCH or IMPUTE2 performed significantly
Considering SEN score instead of Hellinger score provides
essentially the same results (Additional file 1: Table S2).
Interestingly, the currently recommended NQ filter is in
no case the best option.
When comparing MaCH and IMPUTE2 in this sce-

nario on the basis of the Hellinger Score, MaCH results
were slightly better than corresponding results from
IMPUTE2 (see Table 2 and Additional file 1: Table S1).
However, when comparing MaCH and IMPUTE2 based
on the SEN score, MaCH and IMPUTE2 showed similar
performance except in a few cases where IMPUTE2 was
slightly better (Additional file 1: Table S2).

Hole-filling with external HapMap reference
Table 3 shows the results of the scenario “hole filling
with external HapMap reference”. This scenario reflects
basically the same trends as the previous scenario.
Again, there is a clear trend towards lower imputation
quality when the number of SNPs in the SNP subset
becomes smaller and when the number of masked SNPs
increases. Either ALL or LQ performs best and on a
similar level in all scenarios. HQ again is the worst
scenario across all degrees of missingness. BQ is only
slightly better than HQ. Scenarios with a stringent MAF
filter (HQ.MAF, HQ.MAF.HWE) showed better perfor-
mance compared to the scenario HQ.CAR despite of the
smaller numbers of SNPs in it. Results of other filtering
scenarios can be found in Additional file 1: Tables S3
and S4.
In this hole-filling scenario, MaCH performed signifi-

cantly better than IMPUTE2 with Bonferroni-corrected
p-values lying in between 9.68×10−38 and 1.45×10−6 when
using the Hellinger Score for comparison and between
2.74×10−32 and 4.39×10−5 when using the SEN Score
(see Table 3 and Additional file 1: Table S4). In all
analyzed scenarios, hole-filling benefited from using
an external reference panel. This improvement was
statistically significant (Bonferroni corrected p-values:
1.70×10−159 to 6.51×10−10).
ut external reference”: percentages of masked genotypes

rlapping IMPUTE2: Imputation score based on 10% overlapping
masked genotypes

10% 20% 50%

92.43 91.55 86.08+

+ 92.51+ 91.56+ 86.00

92.29 91.36 85.64

89.00 87.31 76.89

88.72 86.95 75.82

percentages of genotypes were masked. Results of the optimal imputation
ificantly inferior compared to the best scenario, are described with Italic-bold
better in the corresponding scenario.



Table 3 (Imputation quality of the scenario “Hole-filling with external HapMap reference”): percentages of overlapping
masked genotypes imputed with good Hellinger score (≥0.6) are presented

Datasets MACH Imputation score based on 10% overlapping
masked genotypes

IMPUTE2 Imputation score based on 10% overlapping
masked genotypes

Data subset name #SNPs 10% 20% 50% 10% 20% 50%

ALL 9602 94.03*+ 93.44* 91.03*+ 93.12+ 92.42+ 89.74

LQ 8472 94.01* 93.45*+ 91.01* 93.10 92.41 89.85+

NQ 7923 93.83* 93.15* 90.61* 92.90 92.11 89.32

BQ 6337 90.85* 89.62* 83.34* 89.85 88.61 82.47

HQ 4658 90.47* 89.05* 81.84* 89.00 87.55 80.57

Datasets of different pre-imputation quality filtering were considered and different percentages of genotypes were masked. Results of the optimal imputation
scenarios are described with (+). Results of the filtering scenarios which are not significantly inferior compared to the best scenario, are described with Italic-bold
letters. An asterisk (*) indicates whether MaCH or IMPUTE2 performed significantly better in the corresponding scenario.
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Entire SNP imputation using external HapMap reference
panel
In this scenario, ALL performs best for all scenarios with
one exception and LQ performed on a similar level. NQ
performed significantly worse than the scenario having
the best score. Also, BQ performed better than HQ. MaCH
often performed slightly superior compared to IMPUTE2
(see Table 4 and Additional file 1: Table S5, Bonferroni
corrected p-values 1.5×10−28 to 0.028). Results of SEN
score were similar to those of Hellinger score (Additional
file 1: Table S6).

Analysis of software specific quality scores
In Table 5 we report the imputation quality in terms of
software specific quality measures, namely MaCH-rsq
scores and IMPUTE-info scores. Both measures are de-
fined on a SNP-wise level, i.e. their application is useful
only for assessing the scenarios of “entire SNP imput-
ation”. We present the percentages of SNPs imputed
with good quality according to a recommended cutoff of
0.3 for both scores ([16,17]). For MaCH, the three sce-
narios ALL, NQ and LQ performed similarly well. Con-
sidering IMPUTE2, all scenarios performed similarly
well except for the case of 50% masking where ALL, NQ
Table 4 (Imputation quality of the scenario ”entire SNP impu
overlapping masked genotypes imputed with good Hellinger

Datasets MACH Imputation score based on 10% ov
masked SNPs

Data subset name #SNPs 10% 20% 50%

ALL 9602 94.36+ 94*+ 91.63+

LQ 8472 94.33* 93.99* 91.61

NQ 7923 94.27 93.82* 91.33

BQ 6337 91.69* 90.76* 85.08

HQ 4658 91.22* 90.2* 83.64*

Datasets of different pre-imputation quality filtering were considered and different
scenarios are described with (+). Results of the filtering scenarios which are not signific
letters. An asterisk (*) indicates whether MaCH or IMPUTE2 performed significantly bet
and LQ performed best. Note that MaCH-rsq and
IMPUTE-info scores are defined differently and hence
may not be compared directly. Indeed, using the software
specific measures and cut-offs, we note that IMPUTE2
results in a higher percentage of SNPs considered as well-
imputed.
Results of the software specific measures applying other

pre-imputation filtering scenarios can be found in the sup-
plement material (Additional file 1: Table S7). Here, all
filters more or less showed similar performance.

Comparison of quality scores
Figure 2 shows scatter plots between different analyzed
measures of imputation quality used in the present paper
(scenario entire SNP imputation, dataset, “ALL”, 50%
missing). We observed generally high correlations between
the scores, suggesting that they capture similar informa-
tion. For example, as reported ([7], supplementary infor-
mation 5), correlation of MaCH- rsq and IMPUTE-info is
highly linear, which is in accordance with our results.

Discussion
In our study we addressed the question whether fil-
tering low quality SNPs has a positive influence on
tation using external HapMap reference”): percentages of
score (≥0.6) are presented

erlapping IMPUTE2 Imputation score based on 10% overlapping
masked SNPs

10% 20% 50%

94.25+ 93.77+ 91.66

94.14 93.68 91.68+

94.13 93.50 91.39

91.20 90.18 84.85

90.21 88.97 82.42

percentages of genotypes were masked. Results of the optimal imputation
antly inferior compared to the best scenario, are described with Italic-bold faced
ter in the corresponding scenario.



Table 5 (Software specific quality scores for the scenario “Entire SNP imputation using external HapMap reference”):
percentages of SNPs above a quality cut-off of 0.3 for both MaCH-rsq and IMPUTE-info score are provided

Datasets MaCH Imputation score observing 10% overlapping
masked SNPs

IMPUTE2 Imputation score observing 10% overlapping
masked SNPs

Data subset name #SNPs 10% 20% 50% 10% 20% 50%

ALL 9602 98.29 98.72+ 98.07+ 99.57+ 99.57+ 99.36

LQ 8472 98.29 98.50 98.07 99.57 99.57 99.57+

NQ 7923 98.50+ 98.50 97.64 99.57 99.57 99.36

BQ 6337 96.57 96.57 92.72 99.14 98.93 97.43

HQ 4658 96.36 96.36 91.65 98.50 98.07 96.36

Results of the optimal imputation scenarios are described with (+). Results of the filtering scenarios which are not significantly inferior compared to
the best scenario, are described with Italic-bold letters. Note that MaCH-Rsq and IMPUTE-info scores are defined differently and cannot be
compared directly.
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the performance of the imputation algorithms MaCH
and IMPUTE2. Considered filtering criteria were call
rate, minor allele frequency and violation of Hardy-
Weinberg equilibrium. Various degrees of stringency
of these criteria were investigated. Combinations of
these filtering criteria resulted in 16 different datasets
Figure 2 Pairwise comparison of the analyzed measures of imputatio
obtained from MaCH ( MaCH_SEN) and IMPUTE (IMPUTE2_SEN), Hellinger scor
MaCH Rsq-score(MaCH_Rsq) and IMPUTE-info (IMPUTE2_INFO) score are sho
without pre-filtering (“ALL”) with 50% missing SNPs. Values refer to the square
comprising different numbers of SNPs (see Table 1).
Three different scenarios of imputation were analyzed:
hole-filling with and without an external reference panel,
and imputation of entirely masked SNPs using an external
reference panel. All three scenarios are of practical rele-
vance. We introduced two novel measures for imputation
n quality. Distribution and pair-wise correlation of SEN-scores
e obtained from MaCH (MaCH_HELLI) and from IMPUTE (IMPUTE2_HELLI),
wn. We present the results for the scenario “Entire SNP imputation”
d Pearson correlation.
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performance namely Hellinger and SEN score. Both are
conceptually different from established measures of impu-
tation quality such as MACH-rsq and IMPUTE-info in
the sense that the new measures allow direct comparisons
of posteriori distributions with measured genotypes. This
however requires a gold-standard of genotypes, which in
our cases, was constructed by masking high-quality SNPs.
In contrast, the software specific measures assess the un-
certainty of imputation results without considering true
genotype information. In consequence, it is possible that
the imputed genotypes are correct but scores are low be-
cause the algorithms are uncertain about it and vice versa.
To compare imputation results between different QC sce-
narios, we consider our measures to be a more natural
choice. Furthermore, our measures can be used for any
imputation platform and also on individual genotype level
(i.e. for hole-filling scenarios).
The difference between Hellinger and SEN score is

that the first score compares the distribution of observed
and estimated genotype probabilities. The latter one mea-
sures agreement of their expectations, thereby effectively
comparing agreement of the allele doses. Despite these
differences, we observed strong correlations between these
measures and software specific measures of imputation
quality control (MaCH-rsq, IMPUTE-info).
Some researchers (e.g. [22,34]) used the software

SNPTEST to compare directly genotyped distribution
and imputed distribution for each SNP. However, under
the additive model, SNPTEST’s freq-addproper- info score
(in the newest version, this score is called info-score only)
is highly correlated with the IMPUTE-info score [7].
Therefore, we did not consider SNPTEST to assess imput-
ation quality here.
As expected and independent of the considered quality

measure, we found a clear trend towards lower imputation
accuracy if the percentage of missingness increased. Fur-
thermore, imputation quality clearly appeared to be more
dependent on the number of SNPs used for imputation
than on their quality. This phenomenon was observed
across all scenarios and applies for all measures of imput-
ation quality considered here. We want to point out that
the dataset ALL, which ignores all kinds of SNP quality
control, was never significantly outperformed by the best
scenario.
In contrast, dataset BQ enriched with SNPs of consider-

ably bad quality, as well as the dataset HQ containing the
lowest number of SNPs, performed worse at approximately
the same level, despite a considerably higher number of
SNPs in BQ. The reason for this is that in the HQ scenario,
numerous low-frequency variants are substituted by a few
high-frequency variants which are more useful for imput-
ing our masked high-frequency variants.
In consequence, accepting putatively wrong genotypes

for imputation rather than thinning out possible proxies
for imputation by strict quality filters appears to be
the better strategy in order to achieve good imputation
results. An explanation is that starting phased haplotype
information at a SNP is randomly chosen if its genotypes
are missing. Even if a typed SNP has lower quality, its
genotypes still might provide useful information regarding
haplotypes. Possibly wrong genotypes could be further
corrected with the knowledge of posterior information
obtained from the underlying Hidden Markov models. In
consequence, our study encourages imputation without
pre-filtering of SNPs or at most very restrictive filtering
with cut-off levels such as those defined for the LQ data-
set. However, one has to acknowledge that including SNPs
with bad quality possibly requires an additional step of
post-imputation quality control for typed SNPs. Hence, it
is possible that typed SNPs are discarded from subsequent
analyses which – if filtered prior to imputation - could be
successfully imputed. This might be undesirable, especially
in case of genetic meta-analyses. In consequence, there is
a general conflict of interest for association analysis: Is it
better to rely on measured genotypes with possible quality
problems or on re-imputed genotypes with imputation un-
certainty? The answer to this question is not obvious and
may vary in different settings. With our work we contribute
to this issue but further research is required to evaluate the
consequences of both approaches for association analyses.
Our main findings are in accordance with and an ex-

tension to the study of Southam et al. [22]. Their major
finding was that pre-imputation quality-filtering of SNPs
results in highly similar imputation quality compared
with no filtering. Our studies extend their analyses to
IMPUTE2 and MaCH. Furthermore, we have shown that
pre-imputation filtering can be even detrimental. We
analyzed the scenarios of hole filling with and without
an external reference panel not considered in [22]. Here,
we showed for the first time that including an external
reference is beneficial in all analyzed scenarios. However,
this might depend on the genetic similarity of target and
reference population, an issue which we aim to analyse
in more detail in the future. Comparing MaCH and
IMPUTE2 revealed frequently significantly better perfor-
mance of MaCH except for a single scenario. However,
this is probably a result of our moderate sample size. It
has been shown [10] that the performance of MaCH is
better for moderate sample sizes in contrast to larger
sample sizes where IMPUTE2 performed better [6,29].
This is explained by differences in the improvement
of haplotype switch accuracies for increasing sample
sizes. Interestingly, differences between software are more
pronounced on the basis of Hellinger score than on the
basis of SEN score.
Compared to MaCH, the software IMPUTE ana-

lyses chunks of data which allows parallelization of the
imputation process. In consequence, IMPUTE generally



Roshyara et al. BMC Genetics 2014, 15:88 Page 10 of 11
http://www.biomedcentral.com/1471-2156/15/88
requires less computation time than MaCH. We analysed
the impact of the overlap of chunks used for imputations
with IMPUTE. The default overlap for IMPTUE is 250 kB.
Increasing this overlap up to 800 kB has only marginal
effects on the imputation accuracy and does not explain
the above mentioned observations (results not shown).
There are some limitations for our study: We analyzed

a dataset of moderate size. However, moderately sized
datasets are still of practical importance e.g. when com-
bining many datasets in large meta-analysis which is
common practice. In line with our results, Southam
et al. [22] used a larger sample but also did not find a
benefit from pre-imputation SNP filtering.
A second limitation is that we focused on common

variants: The reason is that rare variant genotypes are
less reliably measured by current micro-array technolo-
gies so that there is a lack of gold-standard regarding
these genotypes in our study. It has been shown that
imputing rare variants is difficult. Howie et al. [29]
showed for example that for smaller sample sizes, the
imputation accuracy of rare variants (MAF 1-3%) is con-
siderably inferior to those for variants with MAF > 5%.
Still, imputation of common variants is of general rele-
vance for GWAS in order to improve power [1,2].
Another limitation is that we used masked genotypes

as gold standard to assess imputation accuracy instead
of using measured genotypes of complementary technolo-
gies. Therefore, we used strict quality criteria for masked
genotypes in order to ensure that the measured genotypes
are correct. We also performed the masking randomly in
order to avoid biases. An advantage of our approach is
that it allows assessing different degrees of missingness in
the hole-filling scenarios which is of practical relevance
e.g. when combining datasets of different genotyping
platforms.
In the future we aim at investigating the effect of SNP

density, sample size and specific patterns of LD on imput-
ation performance and compare it with existing studies
[35]. Moreover, we also plan to investigate the impact of
external reference panels on imputation quality in differ-
ent ethnicities.

Conclusion
Imputation of partially missing genotypes clearly benefits
from using an external reference panel. At the cost of
computation time, MaCH performed slightly better than
IMPUTE2 in most of our scenarios considering a mod-
erately sized dataset. Genotype imputation using MaCH
or IMPUTE2 was robust against violations of genotype
quality criteria. There is a much stronger dependence of
imputation quality on percentage of missingness and
numbers of SNPs in the dataset to be imputed. Therefore,
SNP filtering prior to imputation is not recommended
given modest quality of the data.
Additional file

Additional file 1: Additional results and imputation commands.
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