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In vivo tumor cell adhesion in the pulmonary
microvasculature is exclusively mediated by tumor
cell - endothelial cell interaction
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Abstract

typical metastatic target of colon cancer.

circulating tumor cells.

Background: Metastasis formation is the leading cause of death among colon cancer patients. We established a new
in-situ model of in vivo microscopy of the lung to analyse initiating events of metastatic tumor cell adhesion within this

Methods: Anaesthetized CD rats were mechanically ventilated and 106 human HT-29LMM and T84 colon cancer cells
were injected intracardially as single cell suspensions. Quantitative in vivo microscopy of the lung was performed in 10
minute intervals for a total of 40 minutes beginning with the time of injection.

Results: After vehicle treatment of HT-29LMM controls 152 £53; 142 +7.5;114 + 55;and 154 + 6.5 cells/20
microscopic fields were found adherent within the pulmonary microvasculature in each 10 minute interval. Similar
numbers were found after injection of the lung metastasis derived T84 cell line and after treatment of HT-29LMM with
unspecific mouse control-IgG. Subsequently, HT-29LMM cells were treated with function blocking antibodies against
B1-, 34-, and av-integrins wich also did not impair tumor cell adhesion in the lung. In contrast, after hydrolization of
sialylated glycoproteins on the cells' surface by neuraminidase, we observed impairment of tumor cell adhesion by
more than 50% (p < 0.05). The same degree of impairment was achieved by inhibition of P- and L-selectins via animal
treatment with fucoidan (p < 0.05) and also by inhibition of the Thomson-Friedenreich (TF)-antigen (p < 0.05).

Conclusions: These results demonstrate that the initial colon cancer cell adhesion in the capillaries of the lung is
predominantly mediated by tumor cell - endothelial cell interactions, possibly supported by platelets. In contrast to
reports of earlier studies that metastatic tumor cell adhesion occurs through integrin mediated binding of extracellular
matrix proteins in liver, in the lung, the continuously lined endothelium appears to be specifically targeted by

Background

One third of patients diagnosed with colo-rectal cancer
will eventually die from this disease representing
~600,000 deaths worldwide per year [1]. Most of these
colo-rectal cancer related deaths are due to distant meta-
static growth rather than local tumor progression. As in
almost any cancer, the pattern of metastatic growth is
non-random and in the case of colo-rectal cancer liver
and lung are predominant metastatic targets, beside
lymph nodes and the peritoneal cavity [2]. The organ spe-
cific character of metastatic growth has already been rec-
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ognised by S. Paget [3] in the late 19th century and his
'seed-and-soil concept' has been modified by additional
findings and dissected into single steps, outlined in the
literature as the 'metastatic cascade' [4].

Based on various in vivo and ex vivo techniques, several
groups suggested mechanically restricted tumor cell
embolism in the first capillary bed entered by circulating
tumor cells [4,5]. In contrast, our own group [6] and
other authors [7] demonstrated specific tumor cell adhe-
sion in the microcirculation of the liver and lung [8,9].
Furthermore, injected human colon cancer cells showed
an organ specific pattern of cell adhesion in rats, mimick-
ing the clinical picture of metastatic colon cancer [10].
Glinksii et al. [11] reported organ-selective metastatic
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tumor cell arrest of human breast cancer cells in a mouse
model, following the typical clinical pattern of metastatic
breast cancer diseases, and a2- and «a6- integrin expres-
sion of colon carcinomas was found to correlate with
their metastatic potential and patient prognosis [12]

Circulating tumor cells adhere to microvascular
endothelial cells (EC) and subendothelial extracellular
matrix (ECM) proteins by different sets of adhesion mol-
ecules. Subsequent and regulated transendothelial cell
migration taking place at secondary sites in response to
several microenvironmental factors as has been numer-
ously reported [6-10,13]. Despite the morphologic simi-
larities of leukocyte and tumor cell adhesion, there are
distinct differences between inflammatory cells and can-
cer cells due to the available surface adhesion molecules
and intracellular signalling cascades. Obviously, malig-
nant cells originating from a variety of tissues differ with
regard to available adhesion molecules for cell - cell or
cell - ECM interactions. For example, E-Selectin medi-
ated adhesion to endothelial cells has been established for
inflammatory leucocytes as well as several human cancer
cells [7-9]

a4f1-integrin binding of endothelial Vascular Cellular
Adhesion Molecule-1 (VCAM) was associated with leu-
kocyte adhesion [14] to endothelial cells, as well as adhe-
sion of human melanoma cells [15] to the endothelium,
but appears not to be involved in prostate cancer cell
adhesion [16]. These findings suggest different adhesion
mechanisms of hematogenous cells, non-epithelial and
epithelial cancer cells during their arrest within capillar-
ies. Recently, we reported comprehensive data on cell
surface molecules involved in initial metastatic tumor cell
adhesion of human colon carcinoma cells within the
hepatic microvasculature in vivo [17,6]. These results
showed preferential arrest of circulating colon carcinoma
cells within the liver via integrins [9,10] The aim of the
present study was to evaluate the adhesion molecules and
mechanisms involved in the organ-specific adhesion of
human colon cancer cells in the lung as their second met-
astatic target organ. To this end we established a new in-
situ model for quantitative in vivo fluorescence micros-
copy of the ventilated and perfused lung.

Methods

Materials and Cells

Media (RPMI1640; DME/F12) and fetal bovine serum
(FBS) were purchased from GIBCO-BRL (Karlsruhe,
Germany). All other chemicals were purchased from
Sigma (Deisenhofen, Germany).

Human highly-metastatic HT-29LMM colon carci-
noma cells (I. Fidler; Houston, TX) were cultured in
RPMI1640 medium and human T84 colon cancer cells
(A. Nussrath, Atlanta), derived from a lung metastasis,
were cultured in DMEM-F12 medium containing 10%
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FBS without antibiotics in humidified 5% CO,/95% air at
37°C. Confluent cell monolayers were used during the
log-phase of growth. Prior to the experiments cells were
rinsed with Calcium-Magnesium-free phosphate buff-
ered solution (CMF-PBS), trypsinized and kept in serum-
free adhesion medium (RPMI1640 containing bovine
serum albumin [BSA] 1%) for 60 min for reconstitution of
cell surface proteins. Trypsinized cells were resuspended
as single cell suspension in CMF-PBS at a final concentra-
tion of 1 x 106 cells/ml. This preparation did not interfere
with adhesive and migrative properties in vitro [18]. For
inhibition experiments, various antibodies or neuramini-
dase-V (C. perfringens) (Sigma) were added during
reconstitution of the cells as indicated below.

Flow cytometry analyses of adhesion molecules

For flowcytometric analysis of adhesion molecules, cells
were trypsinized and washed in serum free medium.
After reconstitution for 60 min, cells were fixed with
fresh 1% paraformaldehyde and processed following a
standardized protocol. The following primary antibodies
were used for detection of certain cell adhesion mole-
cules: anti-human integrin f1 mAb (clone P4C10, Chemi-
con, Hofheim, Germany), anti-human integrin p4 mAb
(clone ASC-8, Chemicon), anti-human integrin 3 (clone
N-20, Santa Cruz,), anti-human av mAb (clone 272-17E6,
Calbiochem, Darmstadt, Germany), anti-human ol inte-
grin mAb (clone SP2/0, Upstate, Lake Placid NY), anti-
human o2 integrin mAb (clone 16B4, Serotec, Oxford,
UK), anti-human a3 integrin mAb (clone ASC-1, Chemi-
con), anti-human a4 integrin mAb (kindly provided by J.
Eble; Miinster, Germany), anti-human o5 mAb (clone
JBS5, Serotec), anti-human a6 mAb (clone 4F10, Serotec),
anti-sLe, (clone KM93; Chemicon), anti sLe, (clone
KM231; Chemicon), anti galectin-3 (clone B2C10; Santa
Cruz Biotechnology). Negative and isotype controls were
similarly processed. Corresponding Alexa-fluor568-
labeled secondary antibodies (Molecular Probes, Leiden,
Netherlands) were used for flow cytometry analysis. For
detection of Thomson-Friedenreich antigen, cell were
incubated with fluorescence labeled Lectin from Arachis
hypogaea (L0881; Sigma) specifically binding TF-antigen
in increasing concentrations. Flow cytometry was done
using EPIC XL (Beckman Coulter, Krefeld, Germany).

Intravital Fluorescence Video Microscopy

Male Sprague-Dawley rats (CD rats; 250-300 g; Charles
River) were cared for in accordance with the standards of
the German Council on Animal Care, under an approved
protocol of the local Animal Welfare Committee
(LANUV NRW 9.93.2.10.36.07.122). Rats were anesthe-
tized using inhalation of isofluorane (Curamed,
Karlsruhe, Germany) and N,O. A permanent catheter

was introduced through the right carotid artery and the
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tip placed centrally to the heart. An open tracheotomy
was performed and the animal was mechanically venti-
lated through a canula placed and fixed in the trachea by
a small animal respirator (Harvard Small Animal Ventila-
tor, Harvard Apparatus, Hugstetten, Germany) at a rate of
35-40/minute and a tidal volume of 3,5 - 4 ml. Adequate
ventilation was confirmed by arterial blood gas analysis.
The anterior chest wall was carefully removed without
disturbances of the lung surface avoiding atelectases. The
animal was placed under an upright in vivo fluorescence
microscope (Zeiss, Oberkochen; Germany) and fluores-
cence microscopy was performed through a thin glass
cover slip mounted on a specially designed holder, care-
fully placed upon the lung's surface with minimal pres-
sure. For positive contrast of the blood vessels, the
animals were slowly injected with 500 pg fluorescine
(FITC) labelled dextran 10,000 kD. Using a similar proto-
col, earlier studies demonstrated stable hemodynamic
conditions and constant microcirculation in the lungs for
at least 60 minutes [19]. Microscopy was performed
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Figure 1 Set-up for in vivo microscopy of the ventilated rat lung.
A: After placement of a catheter central to the heart through the right
carotid artery, a tracheostomy and canulation of the trachea was per-
formed for establishing mechanical ventilation. The chest wall was re-
moved and the right lower lobe was exposed. B: A glass cover slip,
mounted on a specially designed holding device, was placed upon the
right lower lobe with minimal pressure to serve as artificial pleura, and
the animal was placed under an upright in vivo microscope. Time
frame (10 sec.) of stably adherent and sticking human colon cancer
cell. C: Full scale microscopic pictures representative for in vivo microscopy
of the ventilated and physiologically perfused lung in-situ. The present-
ed pictures were taken at the indicated time intervals after tumor cell
injection. One fluorescence-labeled cell is stably adherent to the vas-
cular wall over the 10 second interval of observation. The other cell
("sticking cell") is adherent for a few seconds to the wall without estab-
lishing stable adhesion and finally recirculates through the pulmonary
capillaries. For quantitative analysis of tumor cell adhesion, the lung
surface was screened for stably adherent cells in a standardized fashion
in 10 minute intervals for a total of 40 minutes.
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through a water immersion objective with 20x magnifica-
tion (Figure 1A/B).

Semiquantitative analysis of tumor cell adhesion in vivo
106 CalceinAM labeled human HT-29LMM colon carci-
noma cells were injected as a single cell suspension in 1
ml CMEF-PBS over 1 minute. Standardized lung surface
microscopy was begun immediately after the injection
was completed. The lung surface was continuously
screened in a standardized manner recording the number
of single adherent tumor cells per microscopic field in
inspiration as described before [10]. Tumor cells adhering
for >10 seconds were defined as stably adherent. Micros-
copy was performed in 10 minute intervals for a total of
40 minutes. Emboli of cell clumps were excluded from
analysis.

The cell numbers given are the number of adherent
cells per 20 microscopic fields for each 10 minute time
interval and are expressed as means + standard deviation
from n independent experiments (animals injected).

Involvement of Cell Adhesion Molecules

For inhibition experiments cells were incubated either
with function blocking monoclonal antibodies (mAbs),
type V-neuraminidase or conditioned medium. For some
experiments the animals were treated with 0.8 mg
fucoidane per kg bodyweight 15 minutes prior to cell
injection as described by Preobrazhenskaya et al. [20] for
inhibition of selectin mediated adhesion.

For integrin and galectin-3 inhibition cells were incu-
bated with the appropriate antibodies (1-3 pg/ml, 60 min)
during reconstitution to block specific integrins prior to
the assays. The following mAbs were used: anti-p1 integ-
rin (clone P4C10, Chemicon, Hotheim, Germany), anti
B4-integrin (clone ASC-8; Chemicon), anti-a, (clone 272-
17E6, Calbiochem, Darmstadt, Germany), anti-galectin-3
(clone B2C10; Santa Cruz Biotechnology). This pretreat-
ment has been shown to interfere with the regulation of
cell adhesion in HT-29 cells in-vitro [21] and in vivo
[6,17]. Unspecific mouse IgG (Sigma) was used as con-
trol.

Enzymatic hydrolisation of cell surface glycoprotein
sialic residues to inhibit Selectin ligands was achieved by
incubating cells with 0.01 U/ml type V-neuraminidase
(from C. perfringens; Sigma, Deisenhofen; Germany).
This treatment has been shown to interfere with tumor
cell adhesion in vivo [6]. Vehicle (untreated) cells were
used as control. The inhibition of the Thomson-Frieden-
reich antigen (TF antigen) was realized by, incubating
cells with conditioned medium from the supernatant of
JAA-F11 hybridoma cells that produce function-blocking
mouse IgG against the TF antigen [22,11]. Control cells
were incubated with unconditioned medium.
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Prior to injection cells were washed and resuspended as
single cell suspension in CMF-PBS at a final concentra-
tion of 1 x 106 cells/ml.

Laser scanning microscopy for ex situ evaluation of specific
adhesion

Cells were labeled with CellTracker Green CMFDA fluo-
rescence staining (Molecular Probes) (0.01 mg/ml) for
3D-reconstruction of adherent tumor cells within the
pulmonary microcirculation and the animal was injected
with Vybrad-Dil-LDL (0.04 mg/animal) for labeling of the
endothelium. Both dyes are stable during formalin fixa-
tion and paraffin-embedding. 40 minutes after the tumor
cell injection in situ fixation was carried out by infusing
CMF free PBS at a physiologic pressure of 10-15 mmHg
through the inferior vena cava, followed by a 3.75% form-
alin infusion. The inflated lungs were removed carefully
avoiding the creation of atelectases and kept in formalin
for three days. 25 pm sections were mounted on glass
slides after paraffin embedding. Three dimensional
reconstructions of fluorescence-labeled sections were
processed using a laser-scanning confocal microscope
(Nikon, Diisseldorf; Germany) and the lucia5-software
package (Nikon).

Results

HT 29 LMM adhere to the pulmonary microvasculature

The first fluorescence labeled cells were seen in the pul-
monary microcirculation as soon as 1 minute after the
initiation of the tumor cell injection. While some cells
passed the pulmonary capillaries without any sign of
mechanical size restriction, first adhesive interaction of
the injected cells with the pulmonary capillary system
were observed within minutes. All adherent cells were
localized within the pulmonary capillaries and no adhe-
sive cells were observed within larger pre- or post-capil-
lary vessels. The mean diameter of pulmonary capillaries
determined by in vivo microscopy was 14.3 ym + 2.5 pm.
Perfusion of the capillaries was usually maintained
despite the presence of adhering cells. Once tumor cells
were adherent for at least 10 seconds, significant recircu-
lation was not observed within the observation period. In
contrast to earlier observations under comparable condi-
tions regarding the liver [23], some cells were found stick-
ing to the lung vessel walls and eventually recirculating
before establishing a firm adhesion as it has been
described for leucocytes (Figure 1C). Rolling of cells prior
to adhesion was not observed.

Three dimensional reconstructions of the lungs after in
situ fixation and confocal laserscanning microscopy
revealed specific adhesive interactions between tumor
cells and the microvasculature with persistent free capil-
lary lumen (Figure 2). In vivo microscopy of these areas
demonstrated remaining perfusion within the capillaries
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Figure 2 A/B: Laser scanning microscopy of adherent tumor cell
(formalin fixed). After in situ perfusion with PBS with physiologic pres-
sure through the inferior V. Cava, lungs were fixated in situ by formalin
infused with physiologic pressure. After paraffin embedding, 25 um
sections were analysed by 3D laser scanning microscopy. Three di-
mensional reconstruction revealed tumor cells (A, yellow cell with
white arrow head) adherent to the microvascular endothelium (B,
white arrow heads) and leaving a perfused vessel lumen without signs
of mechanical size-restricted cell arrest.

next to the adhering tumor cells (Figure 1C). It is worth-
while to mention that extravasated tumor cells, e.g. cells
in the alveolar lumen, were not detected by confocal laser
scanning microscopy 40 min after cell injection.

Adhesive properties of HT-29LMM and T84 colon cancer
cells

The human HT-29LMM colon cancer cell line was
derived from repeated in vivo passaging in mice [24]. To
validate the cell line's adhesive properties within the
rodent model used here, we compared the pulmonary
tumor cell adhesion of HT-29LMM with the adhesive
properties of human T84 colon cancer cells derived from
a lung metastasis. After injection of T84 cells treated with
unspecific mouse IgG (n = 6) 16.7 £ 9.0; 15.8 £ 5.1; 14.1 +
5.6; and 13.0 + 1.9 cells/20 microscopic fields were found
adherent in the lung at 10; 20; 30; and 40 minutes after
injection, respectively. Similar processing of HT-29LMM
cells resulted in comparable numbers of adhesive cells
within the pulmonary microcirculation at all time inter-
vals (Table 1). HT-29LMM cells were used for further
experiments due to better comparability with results
from earlier studies using a similar microscopic tech-
nique within the liver.

Expression of adhesion molecules on human HT 29 LMM
colon cancer cells

Identification of potentially involved sets of adhesion
molecules was performed by flow cytometry analysis
defining adhesion molecule expression at the tumor cell
surface. Human HT-29LMM colon cancer cells showed
significant expression of p1-, p4-, al-, a2-, a3-, a6-, and
av-integrin subunits. While only weak o5-integrin
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Table 1: Pulmonary tumor cell adhesion in vivo
Treatment Time intervall after cell injection [min]

0-10 11-20 21-30 31-40
adherent cells/20 microscopic fileds [mean + SD]

T84 16.7 £9.0 15.8+5.1 141+56 13.0+1.9
control IgG [n = 6]
HT-29 LMM 13.5+£5.1 13.5+438 111127 13.5+23
control IgG [n =9]
anti integrin-B1[n=7] 11.4+47 11.8+44 129+2.7 123+3.8
anti integrin-B4 [n =10] 134+7.6 10.7 £4.0 104 +3.2 11.0+45
anti integrin-av [n = 8] 10.6 £ 5.1 10.1+£4.1 95+25 11.7+2.7
vehicle [n=12] 12.8+4.7 13.2+6.7 109+3.9 15.0+5.9
neuraminidase type V [n = 8] 74+30 6.6 +2.3* 6.5 + 2.6* 7.9 £2.9%*
fucoidane (animals) [n =7] 11.6+6.9 74 +3.1*% 7.2 +3.3% 5.6 + 2.5%*
control medium [n = 5] 10.9£5.1 183+ 10.1 16.4+3.9 148 +6.1
anti galectin-3 [n = 5] 18.8+6.7 133124 13.1+£29 123+3.2
anti TF [n=4] 11.5+14.7 7.9+4.7% 8.6 £3.7%* 7.2 +4.0%
anti TF + anti galectin-3 [n = 5] 11.6+1.0 7.4 +2.8%* 7.3 +£2.3%* 6.5 + 1.4%*

ANOVA and post hoc (LSD):
*p<0.05
**p <0.001

expression was found, a4-integrins were not detected, on
the surface of this cell line of epithelial origin (Figure 3A).

In accordance with other authors [9] we found sialyl
Lewis-a (sLe-a), on HT-29LMM cells, while sialyl Lewis-x
(sLe-X) was absent from the cells' surface (Figure 3B).

Furthermore, HT-29LMM cells were found to express
Galectin-3 and Thomson-Friedenreich antigen (TF)
simultaneously (Figure 3B).

Integrins are not involved in initial colon cancer cell
adhesion within the pulmonary microvasculature

We reported earlier that inhibition a6p1- and a6p4-integ-
rins as well as inhibition of avp5-integrins significantly
interfered with metastatic tumor cell adhesion within the
hepatic sinusoids [6,17]. Since adhesive interactions of
HT-29LMM cells with the pulmonary microvasculature
showed comparable patterns, we used the same antibod-
ies and protocols for integrin inhibition as described
before [6,17] to determine the involvement of integrins in
the metastatic cell arrest within the lung.

After injection of HT-29LMM cells treated with unspe-
cific mouse IgG (n = 9) 13.5 + 5.1; 13.5 + 4.8; 11.1 £ 2.7;
and 13.5 + 2.3 cells/20 microscopic fields were found
adherent in the lung at 10; 20; 30; and 40 minutes after
cell injection, respectively. These numbers were compa-
rable to those from untreated cells. Neutralisation of vari-
ous integrin subunits at the tumor cells' surfaces did not
impair cell adhesion within the lung capillaries (Figure
4B; Table 1).

Sialyl Lewis antigens can mediate adhesive tumor cell -
microvascular endothelial cell interactions

After the identification of selectin binding sLe-a at the
cells' surface and with respect to earlier reports indicating
sLe-a mediated tumor cell adhesion within the liver [17],
HT-29 LMM were pre-treated with neuraminidase type
V for enzymatic hydrolization of sialylated residues as
described before [17]. This treatment significantly
impaired metastatic tumor cell adhesion in the lung as it
did in the liver [17]. Using vehicle treated control cells
109 + 3.9 to 15.0 + 5.9 adherent cells/20 microscopic
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Counts

Counts

Integrin Integrin Integrin
beta 1 beta 4 alpha v
Integrin Integrin Integrin
alpha 1 alpha 2 alpha 3
Integrin Integrin Integrin
alpha 4 alpha 5 alpha 6
Fluorescence
Galectin-3 TF-antigen sLe,

sLey

Fluorescence

endothelial cell binding.

Figure 3 Expression of adhesion molecules at HT-29LMM surfaces. A Integrin expression: Flow-cytometry analysis revealed predominant ex-
pression of -, B, as well as a;-, a,-, a;- ag- and a, - integrins on HT-29 LMM cells. Only weak expression of as-integrins; a,-integrins are not expressed.

B Glycoprotein expression: E-Selectin binding sLe-a was found on HT-29LMM in the absence of sLe-x. TF-antigen and galectin-3 are both present for




Gassmann et al. BMC Cancer 2010, 10:177
http://www.biomedcentral.com/1471-2407/10/177

Page 7 of 11

—@—LMM control lgG =0 - T84 control IgG = Zr 'LMM control IgG in RNU

adherent cells / 20 microscopic fields
@

0-10 1120 21-30 3140

time after cell injection [min]

—e—control IgG =0 -anti-beta 1 =2 - anti-beta 4 = ¢ anti-alpha v

adherent cells / 20 microscopic fields

0-10 11-20 21-30 31-40

time after cell injection [min]

Figure 4 Pulmonary tumor cell adhesion in vivo. A: Adhesion of HT-29LMM and T84 colon cancer cells. Determined by quantitative in vivo mi-
croscopy, human highly metastastic HT-29LMM and lung metastasis derived T84 colon cancer cells show similar adhesive properties in the rat lung.
B: Integrin - inhibition Using quantitative in vivo microscopy of the lung, inhibition of colon cancer cells' integrins did not impair in vivo tumor cell
adhesion in the pulmonary microvasculature. C: Selectin - inhibition Enzymatic hydrolisation of sialylated glycoprotein structures by Neumaminidase-
V significantly impaired tumor cell adhesion within the pulmonary microvasculature. Furthermore, tumor cell arrest was impaired after treatment of
the animals with fucoidan 15 minutes prior to cell injection for inhibition of P- and L-selectins. D: Thomson-Friedenreich antigen inhibition Tumor
cell - endothelial cell adhesion in vivo was significantly reduced, but not completely lost, after inhibition of TF-antigen and galectin-3 at tumor cells.
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fields were counted in the respective time intervals. Enzy-
matic hydrolization of sialylated cell surface glycopro-
teins by incubation with neuraminidase-V significantly
impaired early cell adhesion in vivo and the number of
adherent cells was reduced: 6.5 + 2.6 to 7.9 + 3.0 cells/20
microscopic fields (p < 0.05 - 0.001). To confirm the
involvement of selectins, animals were treated with
fucoidan (0.8 mg/kg) 15 minutes prior to cell injection
[19]. This treatment also significantly impaired adhesion
of vehicle treated cells in the pulmonary microvascula-
ture (Figure 4C; Table 1).

Tumor cell adhesion is partly mediated by combined
activity of Thomson-Friedenreich (TF) antigen and
galectin-3

The TF antigen binding cell surface molecule Galectin-3
is likely involved in the adhesion of metastasizing tumor
cells to endothelial cells [11,21]. We therefore treated
control cells (n = 5) with unconditioned control medium
prior to injection. At 10; 20; 30; and 40 minutes after cell
injection 10.9 + 5.1; 18.3 + 10.1, 16.4 + 3,9; and 14.8 + 6.2
cells/20 microscopic fields were adherent within the pul-

monary microcirculation. After incubation of the cells
with unconditioned medium and addition of function
blocking anti-galectin-3 antibodies (n = 5) prior to injec-
tion no significant differences in the numbers of adherent
cells were observed. After incubation with JAA-hybri-
doma medium containing function blocking anti-TF
mouse IgG, significantly reduced adhesion of HT-
29LMM cells was observed. Simultaneous anti-galectin-3
and anti-TF treatment of HT-29LMM cells (n = 5) also
resulted in a significant reduction of adherent cells within
the lung (p < 0.05 - p < 0.001) (Figure 4D; Table 1), similar
to anti-TF treatment alone.

Discussion

The organ specificity of metastatatic TC arrest is not only
determined by the repertoire of available adhesion mole-
cules expressed at the cells' surfaces but in addition is
influenced by the histological architecture, the availabil-
ity, and organ specific exposure of possible adhesion sites
within the targeted organ. In the case of colon cancer, the
lung, next to liver and lymph nodes, is one of the most
important metastasic targets. In this study, we demon-
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strate that metastatic cell arrest in the lung is exclusively
initiated by adhesive interactions between circulating TC
and the pulmonary microvascular endothelium. In con-
trast to the relevance of initial TC-ECM interactions for
cell arrest within the hepatic sinusoids [6,17] direct
matrix binding is not responsible for initial pulmonary
tumor cell arrest. This points out the organ specific
nature of metastatic tumor cell adhesion within potential
target organs.

The lung's microvasculature is lined by a continuous
endothelium, underlined by a basal membrane mainly
composed of fibronectin, collagen IV and laminin. Ana-
tomically defined fenestrae as documented for the kid-
neys' glomerula or the hepatic sinusoidal endothelium
cannot be found in the pulmonary endothelium [25].
Although TC-EC adhesive interactions are of solely func-
tional nature and earlier reports failed to observe mor-
phologic correlations [26], the data presented herein
support the role of TC - EC interactions in the initial
phase of metastatic lung colonization. Adherent TCs
leave a remaining perfused vessel lumen suggesting spe-
cific interactions rather than size restricted arrest. Fur-
thermore, TCs passing the pulmonary capillaries were
repeatedly observed in our study. Size restricted arrest,
cannot be completely excluded by two dimensional in
vivo microscopy, but 3D examination of in situ fixed and
physiologically perfused lungs supports specific adhesion
of colon cancer cells to the pulmonary capillary endothe-
lium.

Despite the controversies about the potential role of
size-restricted mechanical arrest for the initiation of
organ colonization [4] a large body of data supports the
role of specific adhesive interactions of circulating TCs
within the capillary microenvironment of potential meta-
static target organs [27]. This initial adhesion can be
mediated by heterotypic TC - EC interactions and/or TC
- ECM interactions [17,26,28]. Furthermore, the coagula-
tory system [29,30], including platelets [31] and possibly
leucocytes [32] seems to interfere with metastatic tumor
cell arrest.

Under physiological conditions, terminally fucosylated
glycans such as sLe-x function as selectin ligands, e.g. on
activated leucocytes [33], and mediate rolling on and
adhesion to ECs [34]. But altered glycosylation of cell sur-
face molecules is also a prominent feature of malignant
cells [9,35]. These molecules appear to be critically
involved in the organ tropism of metastasis formation.
For example, sLe-a and sLe-x can mediate adhesion of
differentiated epithelial cancer cells to endothelial E-
selectin in vitro [36] and in vivo [28]. SLe-x was shown to
initiate liver metastasis of human colon cancer cells [37]
and high levels of sLe-x expression were correlated with
poor survival of colo-rectal cancer patients [38]. E-selec-
tin mediated adhesion triggers numerous functional
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alterations in adhering TCs [39] as well as in ECs. For
example, adhering TCs induce further E-selectin expres-
sion in ECs [40], while adhering TCs are subjected to
shear forces, inducing intracellular signalling like focal
adhesion kinase phosphorylation and further adhesion
stabilisation [41]. Confined disturbances in microvascu-
lar physiology may further be caused by local induction of
nitric oxide after TC -EC interaction [42], as well as
altered mechanical properties of TC by cytoskeletal rear-
rangement after cell adhesion [43]. Nevertheless, details
of these biophysical alterations remain unclear.

In this study pre-treatment of the animals with
fucoidan and pre-treatment of the injected cells with
neuraminidase significantly impaired pulmonary TC
arrest in vivo. Fucoidan mainly affects P-selectin and L-
selectin with minor effects on E-selectin [44]. In contrast,
neuraminidase inactivates sialylated adhesion molecules,
such as sLe-a that is known to bind E- and P- selectin, and
to a lesser extent also L-selectin. Nevertheless, adhesion
of epithelial TCs to the microvascular endothelium may
also be mediated by indirect cell adhesion, using addi-
tional cell types or soluble molecules within the blood
[31,32]. Therefore, our results suggest the involvement of
platelets and possibly leucocytes in in vivo adhesion of
TCs in the lung. This is also supported by previous
reports from other groups [31,32].

Direct heterotypic TC - EC adhesion seems to be also
mediated by the TF and galectin-3 system [45]. The inhi-
bition of tumor cell adhesion to EC by anti-TF treatment
resulted in increased survival in a mouse model for spon-
taneous breast cancer metastases by impairing TC adhe-
sion without affecting tumor cell proliferation [46].
Similar to earlier reports [9,11,17,32], we were able to
detect a significant contribution of sLe-a - selectin medi-
ated adhesion and TF - galectin-3 mediated TC adhesion
within the lungs.

Beside TC - EC interactions, TC - ECM interactions,
mediated by integrins were shown to be critically
involved in the initiation of distant metastasis formation
[12,47,48]. But in contrast to other typical metastatic tar-
get organs of colon cancer [6,10,17] we could not detect
any significant contribution of ECM binding integrins to
the initiation of pulmonary tumor cell adhesion.
Although o3p1-integrin mediated TC adhesion to the
basal membrane's laminin through single spot-like gaps
of the endothelium was reported [49], we could not
detect TC-ECM interaction in the early time frame ana-
lyzed.

The ECM components underlining the endothelium as
the basal membrane are composed in an organ specific
manner. Furthermore, the endothelial lining has specific
characteristics in different organs that affect tumor cell
adhesion. We recently reported that HT-29LMM passes
the renal microcirculation without any signs of cell arrest
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[10]. On the other hand we found their organ specific
adhesion within liver and lung [10]. In the kidneys' glom-
erula, the endothelium is discontinuously perforated by
fenestrae, covering 20% of the endothelial surface [50]
and the underlining ECM contains fibronectin beside col-
lagen IV and laminin [51]. Inhibition of fibronectin bind-
ing a5B1-integrins on CHO cells critically impaired their
adhesion within the kidney without affecting their adhe-
sion in the lungs [52]. In contrast, CHO cells transfected
with avp3-integrin exhibited enhanced accumulation in
the liver by binding of extracellular vitronectin, while
their accumulation in the lungs did not differ from their
integrin avp3 negative parental cells [53]. In the liver the
ECM is also directly accessible for circulating TCs
through fenestrae of the EC covering 6-8% of the sinusoi-
dal endothelial surface [54]. Fibronectin and type IV col-
lagen in the space of Dissé were found mediating
metastatic HT-29LMM cell arrest in the liver, while type I
collagen predominantly seemed to mediate cell extrava-
sation into the liver parenchyma [6,17,55]. In addition,
TCs can directly adhere to small amounts of laminins via
a6P1- and a6P4-integrins in the space of Dissé [17].

The in vivo microscopy technique used in this study
provided quantitative information of TC arrest in the
lung, but provided insufficient resolution to observe
eventual morphologic changes of adhering TC or
involved EC. Since the interface between capillary lumen
and alveolar air is only 0.1 um [25,54], flattening and
transendothelial migration of tumor cells cannot be
excluded, but extravasated tumor cells, e.g. cells in the
alveolae, were not observed in formalin fixed tissue
examined by confocal laser scanning microscopy. The
fate of the adherent cells remains unclear in this study
and may not be determined using the model and tech-
nique used here, but intravascular proliferation of adher-
ent HT1080 sarcoma cells was described within the
pulmonary capillaries by others [8]. In earlier studies, our
group [10] and others [24] could not determine a correla-
tion of cell adhesion and metastatic potential but found a
positive correlation of metastatic potential and tumor cell
extravasation of different colon cancer cells within the
liver [10]. However, transendothelial migration that
would be required within the lungs may take longer time
periods since endothelial retraction and proteolysis of the
pulmonary basal membrane are required in the lung, but
only partially or not at all in the liver. As first adhesive
interactions were observed as soon as 1 minute after cell
injection and cell adhesion reached high numbers at 10
minutes after tumor cell injection, this seems not only to
be a highly efficient process, but also a highly organ-spe-
cific step for the formation of metastatic lesions [24].

The continuous endothelium of the pulmonary capil-
lary system appears to prevent direct integrin mediated
adhesion of colon cancer cells to the underlining basal
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membrane. Although, single spots of exposed ECM can
be found in the pulmonary capillaries [46], they do not
provide sufficient binding capacity for integrin mediated
adhesion. This is supported by the observation of TCs
'sticking' (temporary adhesion) without establishing firm
adhesions, a phenomenon known for leucocytes but not
documented for TCs in the liver [23]. As a result of initial
TC-EC adhesion, conformational changes such as
endothelial retraction and apoptosis of EC are well docu-
mented [56]. The subsequent exposure of underlining
ECM components can provide additional adhesion
capacity in a second step and may trigger further cell
interactions. This could explain reports of increased lung
metastasis of carcinoma cells after altered Pl-integrin
expression [57]. It would also be in line with reports of
enhanced pulmonary metastasis of fibrosarcoma cells in
mice after endothelial damage by bleomycin treatment
that was associated with cells adhering to exposed basal
membrane [58].

Conclusions

In summary, this study is the first report using intravital
in-situ observation of circulating colon cancer TCs
within their important metastastatic target organ of the
lung. Our results support the importance of organ spe-
cific histological architecture for metastatic TC coloniza-
tion. While integrin mediated adhesion to ECM
components may contribute to the initiation of meta-
static tumor cell arrest in organs with a discontinuous
endothelium like the liver, in organs with a continuous
endothelial lining like the lung, initial metastatic TC
adhesion appears to be exclusively mediated by direct
and/or indirect TC - EC interactions via glycosylated
adhesion molecules, such as selectins and TF-antigens.
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