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Abstract

Background: In this paper, we address the problem of identifying and quantifying polymorphisms in RNA-seq
data when no reference genome is available, without assembling the full transcripts. Based on the fundamental
idea that each polymorphism corresponds to a recognisable pattern in a De Bruijn graph constructed from the
RNA-seq reads, we propose a general model for all polymorphisms in such graphs. We then introduce an exact
algorithm, called KISSPLICE, to extract alternative splicing events.

Results: We show that KISSPLICE enables to identify more correct events than general purpose transcriptome
assemblers. Additionally, on a 71 M reads dataset from human brain and liver tissues, KISSPLICE identified 3497
alternative splicing events, out of which 56% are not present in the annotations, which confirms recent estimates
showing that the complexity of alternative splicing has been largely underestimated so far.

Conclusions: We propose new models and algorithms for the detection of polymorphism in RNA-seq data. This
opens the way to a new kind of studies on large HTS RNA-seq datasets, where the focus is not the global
reconstruction of full-length transcripts, but local assembly of polymorphic regions. KISSPLICE is available for
download at http://alcovna.genouest.org/kissplice/.

Background
Thanks to recent technological advances, sequencing is
no longer restricted to genomes and can now be applied
to many new areas, including the study of gene expres-
sion and splicing. The so-called RNA-seq protocol con-
sists in applying fragmentation and reverse transcription
to a RNA sample followed by sequencing the ends of
the resulting cDNA fragments. The short sequencing
reads then need to be reassembled in order to get back
to the initial RNA molecules. A lot of effort has been
put on this assembly task [2], whether in the presence
or in the absence of a reference genome but the general
goal of identifying and quantifying all RNA molecules
initially present in the sample remains hard to reach.

The main challenge is certainly that reads are short, and
can therefore be ambiguously assigned to multiple tran-
scripts. In particular, in the case of alternative splicing
(AS for short), reads stemming from constitutive exons
can be assigned to any alternative transcript containing
this exon. Finding the correct transcript is often not
possible given the data we have, and any choice will be
arguable. As pointed out in Martin and Wang’s review
[2], reference-based and de novo assemblers each have
their own limitations. Reference-based assemblers
depend on the quality of the reference while only a
small number of species currently have a high-quality
reference genome available. De novo assemblers imple-
ment reconstruction heuristics which may lead them to
miss infrequent alternative transcripts while highly simi-
lar transcripts are likely to be assembled into a single
transcript. We argue here that it is not always necessary
to aim at the difficult goal of assembling full-length
molecules. Instead, identifying the variable parts
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between molecules (polymorphic regions) is already very
valuable and does not require to solve the problem of
assigning a constitutive read to the correct transcript.
We therefore focus in this paper on the simpler task of
identifying polymorphisms in RNA-seq data. Three
kinds of polymorphisms have to be considered: i) AS
(alternative splicing) that produces several alternative
transcripts for a same gene, ii) SNPs (single nucleotide
polymorphism) that may also produce several transcripts
for a same gene whenever they affect transcribed
regions, and iii) approximate tandem repeats which
affect the number of copies of tandem repeats. Our con-
tribution in this paper is double: we first give a general
model which captures these three types of polymorph-
ism by linking them to characteristic structural patterns
called “bubbles” in the De Bruijn graph (DBG for short)
built from a set of RNA-seq reads, and second, we pro-
pose a method dedicated to the problem of identifying
AS events in a DBG, including read-coverage quantifica-
tion. We notice here that only splicing events but not
transcriptional events, such as alternative start and poly-
adenylation sites, are covered by our method.
The identification of bubbles or bulges in DBG has

been studied before in the context of genome assembly
[3-5]. However, the purpose in these works was not to
enumerate these patterns, but “only” to remove them
from the graph. Additionally, since in these applications,
the patterns correspond to SNPs and sequencing errors,
the authors only considered paths of length smaller than
a constant.
More recently, ad-hoc enumeration methods have

been proposed but are restricted to non-branching bub-
bles [6], i.e., each vertex from the bubble has in-degree
and out-degree 1, except for the extremities of the
bubble.
Extracting AS events from a splicing graph has been

studied before [7] but a significant difference between
splicing graphs and De Bruijn graphs is that in the for-
mer, nodes are genomically ordered (through the use of
a reference annotated genome) therefore leading to a
DAG, whereas DBGs are general graphs, that further-
more do not require any additional information to be
built.
When no reference genome is available, efforts have

focused on assembling the full-length RNA molecules,
not the variable parts which are our interest here. Most
RNA-seq assemblers [8-10] do rely on the use of a
DBG, but, since the primary goal of an assembler is to
produce the longest contigs, heuristics are applied, such
as tip or bubble removal, in order to linearise the graph.
The application of such heuristics results in a loss of
information which may in fact be crucial if the goal is
to study polymorphism.

To our knowledge, this work is the first attempt to
characterise polymorphism in RNA-seq data without
assembling full-length transcripts. We stress that it is
not a general purpose transcriptome assembler and
when we benchmark it against such methods, we only
focus on the specific task of AS event calling. Finally,
our method can be used with a single or multiple RNA-
seq experiments and our quantification module outputs
a coverage (reads per nt) for both the shorter and the
longer isoform(s) of each AS event, in each experiment.
The paper is organised as follows. We first present the

model (Section “De-Bruijn graph models“) linking struc-
tures of the DBG for a set of RNA-seq reads to poly-
morphism, and then introduce a method, that we call
KISSPLICE, for identifying DBG structures associated
with AS events (Section “The KISSPLICEalgorithm“).
We show in Section “Results“ the results of using KISS-
PLICE compared with other methods on simulated and
real data.

Methods
De-Bruijn graph models
De-Bruijn graph
DBGs were first used in the context of genome assembly
in 2001 by Pevzner et al. [11]. In 2007, Medvedev et al.
[12] modified the definition to better model DNA as a
double stranded molecule. In such a context, a DBG is a
bidirected multigraph, each node N storing a sequence w
and its reverse complement w̄ . The sequence w, denoted
by F(N), is the forward sequence of N, while w̄ , denoted
by R(N), is the reverse complement sequence of N. An
arc exists from node N1 to node N2 if the suffix of length
k - 1 of F(N1) or R(N1) overlaps perfectly with the prefix
of F(N2) or R(N2). Each arc is labelled with a string in
{FF, RR, FR, RF}. The first letter of the arc label indicates
which of F(N1) or R(N1) overlaps F(N2) or R(N2), this lat-
ter choice being indicated by the second letter. Because
of reverse complements, there is an even number of arcs
in the DBG: if there is an arc from N1 to N2 then, neces-
sarily, there is an arc from N2 to N1 (e.g. if the first arc
has label FF then the second has label RR). Examples of
DBGs are presented in Figure 1.
Definition 1 (Valid path) The traversal of a node is
said to be valid if the rightmost label (F or R) of the arc
entering the node is equal to the leftmost label of the arc
leaving the node.
A path in the graph is valid if for each node involved

in the path, its traversal is valid, that is, each pair of
adjacent arcs in the path are labelled, respectively, XY
and Y Z with X, Y, Z Î {R, F}.
For instance, for any graph shown in Figure 1, the

path starting from the leftmost encircled node, going by
the upper path to the rightmost encircled node is valid.
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A DBG can be compressed without loss of information
by merging simple nodes. A simple node denotes a node
linked to at most two other nodes. Two adjacent simple
nodes are merged into one by removing the redundant
information. A valid path composed by i > 1 simple
nodes is compressed into one node storing a sequence
of length k + (i - 1) as each node adds one new charac-
ter to the first node. Figure 1.a represents the com-
pressed DBG shown in Figure 1.a0. In the remaining of
the paper, we denote by cDBG a compressed DBG.
Bubble patterns in the cDBG
Polymorphisms (i.e. variable parts) in a transcriptome or
a genome, correspond to recognisable patterns in the
cDBG, which we call a bubble. Intuitively, the variable
parts will correspond to alternative paths and the com-
mon parts will correspond to the beginning and end
points of these paths. We now formally define the
notion of bubble, taking carefully into account the bi-
directed and arc labeled nature of the cDBG.
Definition 2 (Node switching with respect to a path) A
node is switching with respect to a path if this path is
invalid during the traversal of this node.
Definition 3 (Bubble) In the cDBG, a bubble is a simple
cycle involving at least three distinct nodes such that
exactly two nodes SNleft and SNright are switching w.r.t.
the path of the cycle. By definition, two valid paths exist
between these two switching nodes. In the remaining of
the paper, we refer to these two paths as the paths of the
bubble. If they differ in length, we refer to, respectively,
the longer and the shorter path of the bubble.
Figure 1 presents four bubbles. For each one, their

switching nodes are encircled in blue.
In general, any process generating patterns asb and

as’b in the sequences, with a, b, s, s’ Î Σ*, |a| ≥ k, |b|
≥ k and s and s’ not sharing any k-mer, creates a bub-
ble in the cDBG. Indeed, all k-mers entirely contained
in a (resp. b) compose the node SNleft (resp. SNright).

Since |a| ≥ k and s ≠ s’, there is at least one pair of k-
mers, one in as and the other in as’, sharing the k - 1
prefix and differing by the last letter, thus creating a
branch in SNleft from which the two paths in the bub-
ble diverge. The same applies for sb, s’b and SNright,
where the paths merge again. All k-mers contained in
s (resp. s’) and in the junctions as and sb (resp. as’ and
s’b) compose the paths of the bubble. In the case of
AS events and approximate tandem repeats, s is empty
and the shorter path is composed of k-mers covering
the junction ab.
This model is general as it captures SNPs, approxi-

mate tandem repeats and AS events, as shown in Figure
1. The main focus of the algorithm we present in this
paper is the detection of bubbles generated by AS
events.
Bubbles generated by AS events
A single gene may give rise to multiple alternative spli-
ceforms through the process of AS. Alternative splice-
forms differ locally from each other by the inclusion or
exclusion of subsequences. These subsequences may
correspond to exons (exon skipping), exon fragments
(alternative donor or acceptor sites) or introns (intron
retention) as shown in Figure 2. Observe that alternative
start and polyadenylation sites, which are not considered
as AS events but as transcriptional events, are not taken
into account in this work. A splicing event corresponds
to a local variation between two alternative transcripts.
It is characterised by two common sites (called a and b
in the examples given in Figure 2) and a variable part
(called s Figure 2). In the cDBG, the common sites cor-
respond to the switching nodes and the variable part to
the longer path. As there are k - 1 k-mers at the junc-
tion between the two common sites a.b, the shorter
path is composed of at most k - 1 k-mers, i.e. represents
a path of length at most 2k - 2 in the cDBG. An exam-
ple is given in Figure 1.b.

Figure 1 De Bruin graphs. Part of non-compressed (a0) and compressed (a, b, c) de Bruijn graphs (k = 5). Each node contains a word (upper
text of each node) and its reverse complement (lower text of each node). In the uncompressed graph, the word is a k-mer. Encircled nodes are
switching with respect to red paths (pointed out by red arrows). (a0, a) Bubble due to a substitution (red letter). Starting from the forward
strand in the leftmost (switching) node would generate the sequences CATCT A CGCAG (upper path) and CATCT C CGCAG (lower path). (b)
Bubble due to the skipped exon GCTCG (blue sequence). This bubble is generated by the sequences CATCT ACGCA and CATCT GCTCG ACGCA.
(c) Bubble due to an inexact tandem repeat. This bubble is generated by the sequences CATCT TAGGA and CATCT CATCA TAGGA, where
CATCT CATCA is an inexact tandem repeat.

Sacomoto et al. BMC Bioinformatics 2012, 13(Suppl 6):S5
http://www.biomedcentral.com/1471-2105/13/S6/S5

Page 3 of 12



The shorter path of a bubble generated by an AS
event has length exactly 2k - 2 iff (i) the last nucleotide
(nt for short) of the variable part is distinct from the
last nt of the left switching node, and (ii) the first nt of
the variable part is distinct from the first nt of the right
switching node. Otherwise, the two alternative paths
join (case (i)) or diverge (case (ii)) earlier and the
shorter path may be smaller. In human, 99% of the
annotated exon skipping events yield a bubble with a
shorter path length between 2k - 8 and 2k - 2.
Bubbles generated by SNPs and approximate tandem
repeats
Polymorphism at the genomic level will necessarily also be
present at the transcriptomic level whenever it affects
transcribed regions. Two major kinds of polymorphism
can be observed at the genomic level: SNPs and approxi-
mate tandem repeats. As shown in Figure 1, these two
types of polymorphism also generate bubbles in the cDBG.
However, these bubbles have characteristics which

enable to differentiate them from bubbles generated by
AS events. Indeed, bubbles generated by SNPs exhibit
two paths of length exactly 2k - 1, which is larger than
2k - 2, the maximum size of the shorter path in a bub-
ble generated by an AS event.
Approximate tandem repeats may generate bubbles

with a similar path length as bubbles generated by spli-
cing events, but the sequences of the paths exhibit a
clear pattern which can be easily identified: the longer

path contains an inexact repeat. More precisely, as out-
lined in Figure 1.c, it is sufficient to compare the shorter
path with one of the ends of the longer path.
Finally, genomic insertions or deletions (indels for

short) may also generate bubbles with similar path
lengths as bubbles generated by splicing events. In this
case, the difference of length between the two paths is
usually smaller (less than 3 nt for 85% of indels in
human transcribed regions [13] whereas it is more than
3 nt for 99% of AS events). In our method, when the
difference of path lengths is strictly below 3, we classify
the bubble as an indel. Otherwise, we do not decide,
which means that a fraction of the bubbles we report as
AS events will correspond to indels. Note that this clas-
sification is a simple suggestion. We encourage users to
affine results by considering species specificity and by
applying coverage criterion.
In the following, we focus on bubbles generated by AS

events. We do provide as a collateral result three addi-
tional collections of bubbles: one corresponding to puta-
tive SNPs, one to short indels, and one to putative
approximate tandem repeats. The post-treatment of
these collections to discard false positives caused by
sequencing errors is beyond the scope of this paper.

The KISSPLICE algorithm
The KISSPLICE algorithm detects in the cDBG all the
bubble patterns generated by AS events, i.e. the bubbles

Figure 2 AS events generating a bubble in the DBG. All these events create a bubble in the DBG or cDBG, in which the shorter path is
composed by k-mers covering the ab junction. This path, composed by k - 1 nodes in the DBG, is compressed into a sequence of length 2k - 2
in the cDBG (Figure 1.b).
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having a shorter path of length at most 2k - 2. Essen-
tially, the algorithm enumerates all the cycles verifying
the two following criteria: i) the path obtained by fol-
lowing all the nodes of the cycle contains exactly two
nodes that are switching for this path, and ii) the length
of the shorter path linking the two switching nodes
must be no longer than 2k - 2. Further criteria are
applied to make the algorithm more efficient without
loss of information, and to eliminate polymorphism
events that do not correspond to AS. Since the number
of cycles in a graph may be exponential with the size of
the graph, the naive approach of enumerating all cycles
of the cDBG and verifying which of them satisfy our
conditions is only viable for very small cases.
Nonetheless, KISSPLICE is able to enumerate a poten-

tially exponential number of bubbles for real-sized data
in very reasonable time and memory. This is in part due
to the fact that, previous to cycle enumeration, the
graph is pre-processed in a way that, along with the
pruning criteria of Step 4 (see below), is responsible for
a good performance in practice.
KISSPLICE is indeed composed of six main steps

which are described next. The pre-processing just men-
tioned corresponds to Step 2. As far as we know, it is
the first time it is used in conjunction with cycle
enumeration.
Step 1. Construction of the cDBG of the reads of one

or several RNA-seq experiments. Each node contains
the coverage of the corresponding k-mer in each experi-
ment. In order to get rid of most of the sequencing
errors, nodes with a minimal coverage of 1 may be
removed.
Step 2. Biconnected component (BCC for short)

decomposition. A connected undirected graph is bicon-
nected if it remains connected after the removal of any
vertex. A BCC of an undirected graph is a maximal
biconnected subgraph. Moreover, it is possible to show
that the BCCs of an undirected graph form a partition
of the edges with two important properties: every cycle
is contained in exactly one BCC, and every edge not
contained in a cycle forms a singleton BCC. Applying
on the underlying undirected graph of the cDBG Tar-
jan’s lowpoint method [14] which performs a modified
depth-first search traversal of the graph, Step 2 detects
all BCCs, and discards all singleton ones that could not
contain any bubble. Without modifying the results, this
considerably reduces the memory footprint and the
computation time of the whole process. To give an idea
of the effectiveness of this step, the cDBG of a 5 M
dataset had 1.7 M nodes, but the largest BCC only 2961
nodes.
Step 3. Four-nodes compression. Single substitution

events (SNPs, sequencing errors) generate a large num-
ber of cycles themselves included into bigger ones,

creating a combinatorial explosion of the number of
possible bubbles. This step of KISSPLICE detects and
compresses all bubbles composed by just four nodes:
two switching nodes and two non-branching internal
nodes each storing equal length sequences differing by
just one position. Figure 1.a shows an example of a
four-nodes bubble. Four-nodes bubbles are output as
potential SNPs and then reduced to a three-nodes path.
The two non-branching internal nodes are merged into
one, storing a consensus sequence where the unique
substitution is replaced by N.
Step 4. Bubbles enumeration. The cycles are detected

in the cDBG using a backtracking procedure [15] aug-
mented with two pruning criteria. The exploration of
one cycle is stopped if the path contains more than two
nodes that are switching relative to the path that is
being followed, or the length of the shorter path is big-
ger than 2k - 2. This approach has the same theoretical
time complexity of Tiernan’s algorithm for cycle enu-
meration [15], which is worse than Tarjan’s [16] polyno-
mial delay algorithm but it appears to be not immediate
how to use the pruning criteria with the latter while
preserving its theoretical complexity. We however were
able to show that in practice, the pruning criteria are
very effective for the type of instances we are dealing
with. Indeed, we compared the three following imple-
mentations on a 1 M reads dataset: i) Tiernan ii) Tarjan
iii) Tiernan with prunings (our method). The results
clearly showed that, while Tarjan (22 min) outperforms
Tiernan (32 min), both are clearly outperformed when
the prunings are used (4 s).
Step 5. Results filtration and classification. The two

paths of each bubble are aligned. If the whole of the
shorter path aligns with high similarity to the longer
path, we decide that the bubble is due to an approxi-
mate tandem repeat (see Section “Bubbles generated by
SNPs and approximate tandem repeats“). After this
alignment, a bubble is classified either as an AS event,
an approximate tandem repeat, or a small indel (less
than 3 nt).
Step 6. Read coherence and coverage computation.

Reads from each input dataset are mapped to each path
of the bubble. If at least one nucleotide of a path is cov-
ered by no read, the bubble is said to be not read-coher-
ent and is discarded. The coverage of each position of
the bubble corresponds to the number of reads overlap-
ping this position. Border effects are handled in the fol-
lowing way: reads mapping to the extremity of a path
with less than k bases are discarded. This results in a
systematic under-estimation of the coverage of the
extremities of the path. Under a simple assumption of
locally uniform coverage, this can be counter-balanced
by multiplying the coverage of each of the k - 1 external
positions by a correction factor of L

L−i , with L the read
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size and i the distance to the first non biased position.
This correction is possible because the paths considered
correspond to internal transcript sequences, not to a
transcription start or end.

Results
Simulated data
In order to assess the sensitivity and specificity of our
approach, we simulated the sequencing of genes for
which we are able to control the number of alternative
transcripts. We show that the method is indeed able to
recover AS events whenever the alternative transcripts
are sufficiently expressed. For our sensitivity tests, we
used simulated RNA-seq single end reads (75 bp) with
sequencing errors. We first tested a pair of transcripts
with a 200 nt skipped exon. Simulated reads were
obtained with MetaSim [17] which is a reference soft-
ware for simulating sequencing experiments. As in real
experiments, it produces heterogeneous coverage and
authorises to use realistic error models.
In order to find the minimum coverage for which we

are able to work, we created datasets for several cov-
erages (from 4× to 20×, which corresponds to 60 to 300
Reads Per Kilobase or RPK for short), with 3 repetitions
for each coverage, and tested them with different values
of k (k = 13, ...41). The purpose of using 3 repetitions
for each coverage was to obtain results which did not
depend on irreproducible coverage biases. For coverages
below 8× (120 RPK), KISSPLICE found the correct
event in some but not all of the 3 tested samples. The
failure to detect the event was due to the heterogenous
and thus locally very low coverage around the skipped
exon, e.g. some nt were not covered by any read or the
overlap between the reads was smaller than k-1. Above
8× (120 RPK), KISSPLICE detected the correct exon
skipping event in all samples.
For each successful test, there was a maximal value

kmax for k above which the event was not found, and a
minimal value kmin below which KISSPLICE also
reported false positive events. Indeed, if k is too small,
then the pattern ab, as ‘b, with |a| ≥ k, |b| ≥ k is more
likely to occur by chance in the transcripts, therefore
generating a bubble in the DBG. Between these two
thresholds, KISSPLICE found only one event: the correct
one. The values of kmin and kmax are clearly dependent
on the coverage of the gene. At 8× (120 RPK), the 200
nucleotides exon was found between kmin = 17 and kmax

= 29. At 20× (300 RPK), it was found for kmin = 17 and
kmax = 39. We performed similar tests on other datasets,
varying the length of the skipped exon. As expected, if
the skipped exon is shorter (longer), KISSPLICE needed
a lower (higher) coverage to recover it.
Since KISSPLICE is, to our knowledge, the first

method able to call AS events without a reference

genome, it cannot be easily benchmarked against other
programs. Here, we compare it to a general purpose
transcriptome assembler, Trinity [8]. Both methods are
compared only on the specific task of AS event calling.
The current version of Trinity being restricted to a fixed
value of k = 25, we systematically verified that this value
was included in [kmin, kmax].
We found out that Trinity was able to recover the AS

event in all 3 samples only when the coverage was
above 18× (270 RPK), which clearly shows that KISS-
PLICE is more sensitive for this task. This can be
explained by the fact that TRINITY uses heuristics
which consist in discarding a k-mer in the DBG when-
ever it is 20 times less frequent than an alternative k-
mer branching at the same location in the DBG.
All these results were obtained using a minimal k-mer

coverage (mkC for short) of 1. We also tested with mkC
= 2 (i.e. k-mers present only once in the dataset are dis-
carded), leading to the same main behaviour. We
noticed however a loss in sensitivity for both methods,
but a significant gain in the running time. KISSPLICE
found the event in all 3 samples for a coverage of 12×
(180 RPK) which remains better than the sensitivity of
Trinity for mkC = 1.

Real data
We further tested our method on RNA-seq data from
human. Even though we do not use any reference gen-
ome in our method, we applied it to cases where an
annotated reference genome is indeed available in order
to be able to assess if our predictions are correct.
We ran KISSPLICE with k = 25 and mkC = 2 on a

dataset which consists of 32 M reads from human brain
and 39 M reads from liver from the Illumina Body Map
2.0 Project (downloaded from the Sequence Read
Archive, accession number ERP000546). As in all DBG-
based assemblers, the most memory consuming step
was the DBG construction which we performed on a
cluster. The memory requirement is directly dependent
on the number of unique k-mers in the dataset. Despite
the fact that we do not use any heuristic to discard k-
mers from our index, our memory performances are
very similar to the ones of Inchworm, the first step of
Trinity, as indicated in Figure 3. In addition, for the spe-
cific task of calling AS events, KISSPLICE is faster than
TRINITY as shown in Figure 4.
KISSPLICE identified 5923 biconnected components

which contained at least one bubble, 664 of which con-
sisted of bubbles generated by approximate tandem
repeats and 1160 which consisted of bubbles generated
by short indels (less than 3 nt). Noticeably, the BCCs
which generated most cycles and were most time con-
suming were associated to approximate tandem repeats.
As these bubbles are not of interest for KISSPLICE, this
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observation prompted us to introduce an additional
parameter in KISSPLICE to stop the computation in a
BCC if the number of cycles being enumerated reaches
a threshold. This enabled us to have a significant gain of
time. We however advise not to use this threshold if the
purpose is to identify AS events associated to approxi-
mate tandem repeats, which we did not address here.
Out of the 4099 remaining BCCs, we found that 3657

were read-coherent (i.e. each nucleotide is covered by at
least one read) and we next focused on this set. For
each of the 3657 cases, we tried to align the two paths
of each bubble to the reference genome using Blat [18].
If the two paths align with the same initial and final
coordinates, then we consider that the bubble is a real
AS event. If they align with different initial and final
coordinates, then we consider that it is a false positive.
Out of the 3657 BCCs, 3497 (95%) corresponded to real
AS events, while the remaining corresponded to false
positives. A first inspection of these false positives led to
the conclusion that the majority of them correspond to
chimeric transcripts. Indeed, the shorter path and the
longer path both map in two blocks within the same

gene, but the second block is either upstream of the
first block, or on the reverse strand, in both cases con-
tradicting the annotations and therefore suggesting that
the transcripts are chimeric and could have been gener-
ated by a genomic rearrangement or a trans-splicing
mechanism.
For each of the 3497 real cases, we further tried to

establish if they corresponded to annotated splicing
events. We therefore first computed all annotated AS
events using AStalavista [19] and the UCSC Known
Genes annotation [20]. Then, for each aligned bubble,
we checked if the coordinates of the aligned blocks
matched the splice sites of the annotated AS events. If
the answer was positive, then we considered that the AS
event we found was known, otherwise we considered it
was novel. Out of a total of 3497 cases, we find that
only 1538 are known while 1959 are novel. This clearly
shows that current annotations largely underestimate
the number of alternative transcripts per multi-exon
genes as was also reported recently [1].
Additionally, we noticed that 719 BCCs contained

more than one AS event, which all mapped to the same

Figure 3 Memory usage. Memory usage of KISSPLICE and Inchworm as a function of input size.
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gene. This corresponds to complex splicing events
which involve more than 2 transcripts. Such events have
been described in Sammeth et al. [7]. Their existence
suggests that more complex models could be established
to characterise them as one single event, and not as a
collection of simple pairwise events. An example of
novel complex AS event is given in Figure 5.
We also found the case where the same AS event

maps to multiple locations on the reference genome
(423 cases). We think these correspond to families of
paralogous genes, which are “collectively” alternatively
spliced. We were able to verify this hypothesis on all
tested instances. In this case, we are unable to decide
which of the genes of the family are producing the alter-
native transcripts, but we do detect an AS event.

Characterisation of novel AS events
In order to further characterise the 1959 novel AS events
we found, we compared them with annotated events con-
sidering their abundance, length of the variable region and
use of splice sites. For each AS event, we have 4 abun-
dances, one for each spliceform (i.e. path of the bubble),

and one for each condition. We computed the abundance
of an event as the abundance of the minor spliceform. As
outlined in Figure 6, we show that novel events are less
abundant than annotated events. This in itself could be
one of the reasons why they had not been annotated so
far. Interestingly, we also found that while annotated
events are clearly more expressed in brain than liver (med-
ian coverage of 3.4 Vs 1.2), this trend was weaker for novel
events (2.4 Vs 1.2). This may reflect the fact that, since tis-
sue-specific splicing in brain has been intensely studied,
annotations may be biased in their favour.
We then computed the length of each event as the

difference of the length between the two paths of the
bubble. We found that for annotated events, there is a
clear preference (59%) for lengths that are a multiple of
3, which is expected if the event affects a coding region.
However, although still very different from random, this
preference is less strong for novel events (45%), which,
in addition are particularly enriched in short lengths as
shown in Figure 7.
Finally, we computed the splice sites of annotated and

novel events, and we found that a vast majority (99.5%)

Figure 4 Time performances. Time performances of KISSPLICE and TRINITY as a function of input size.
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of known events exhibit canonical splice sites, while this
is again less strong for novel events (75.3%). Out of the
non canonical cases, 13 correspond to U12 introns, but
most correspond to short events.
Altogether, while we cannot discard that short non

canonical events do occur and have been under-anno-
tated so far, we think that the observations we make on
the length and splice site features can be explained by
the presence of genomic indels in our results. We had

indeed already stated in Section “De-Bruijn graph mod-
els“ that while most annotated genomic indels are below
3 nt, some may still be above. In practice, if the purpose
is to strictly study AS events and not indels, then we
recommend to focus on events longer than 10 nt, which
have canonical splice sites in 95.2% of the cases. More
generally, we wish to stress that this confusion between
genomic indels and AS events is currently being made
by all transcriptome assemblers.

Figure 5 Complex AS event. BCC corresponding to a novel complex AS event. The intermediate annotated exon is either present, partially
present, or skipped. (a) The annotations (blue track) report only the version where it is present while black tracks report all events found by
KISSPLICE. (b) The cDBG associated to this complex event where the junction nodes are composed by 2k - 2 nucleotides.

Figure 6 Event abundances. Abundance of known and novel events.
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Comparison with Trinity
Finally, in order to further discuss the sensitivity of our
method on real data, we compared our results with TRI-
NITY. Although TRINITY is not tailored to find AS
events, we managed to retrieve this information from
the output. Whenever TRINITY found several alterna-
tive transcripts for one gene, we selected this gene. We
further focused on cases which contained a cycle in the
splicing graph reconstructed from this gene and we
compared them with the events found by KISSPLICE.
Whenever we found that both the longer and the
shorter path of a bubble were mapping to the tran-
scripts of a TRINITY gene, we decided that both meth-
ods had found the same event. In total, KISSPLICE
found 4099 cases, TRINITY found 1123 out of which
553 were common. While the sensitivity is overall larger
for KISSPLICE, we see that 570 cases are found by Tri-
nity and not by KISSPLICE. We then mapped these
transcripts to the human genome using blat. In many
instances (348 cases), the transcripts did not align on
their entire length, or to different chromosomes,

indicating that they corresponded to chimeras. A first
inspection of the remaining 222 cases revealed that they
correspond to the complex BCCs we chose to neglect at
an early stage of the computation, because they contain
a very large number of approximate tandem repeats. A
first simple way to deal with this issue is to increase the
value of k. The effect of this is to break the large BCCs
into computable cases, enabling to recover a good pro-
portion of the missed events. For instance, for k = 35,
we found back 84 cases. More generally, this shows that
more work on the model and on the algorithms is still
required to characterise better AS events which are
intricated with approximate tandem repeats. We think
that TRINITY manages to identify some of them
because it uses heuristics, which enables it to simplify
these complex graph structures.

Conclusions
This paper presents two main contributions. First, we
introduced a general model for detecting polymorphisms
in De Bruijn graphs, and second, we developed an

Figure 7 Event lengths. Distribution of lengths of the variable regions for known and novel events. Only the initial part of the distribution is
given.

Sacomoto et al. BMC Bioinformatics 2012, 13(Suppl 6):S5
http://www.biomedcentral.com/1471-2105/13/S6/S5

Page 10 of 12



algorithm, KISSPLICE, to detect AS events in such
graphs. This approach enables to tackle the problem of
finding AS events without assembling the full-length
transcripts, which may be time consuming and uses
heuristics that may lead to a loss of information. To our
knowledge, this approach is new and should constitute a
useful complement to general purpose transcriptome
assemblers.
Results on human data show that this approach

enables de-novo calling of AS events with a higher sen-
sitivity than obtained by the approaches based on a full
assembly of the reads, while using similar memory
requirements and less time. 5% of the extracted events
correspond to false positives, while the 95% remaining
can be separated into known (44%) and novel events
(56%). Novel events exhibit similar sequence features as
known events as long as we focus on events longer than
10 nt. Below this, novel events seem to be enriched in
genomic indels.
KISSPLICE is available for download at http://alcovna.

genouest.org/kissplice/ and can already be used to estab-
lish a more complete catalog of AS events in many spe-
cies, whether they have a reference genome or not.
Despite the fact that more and more genomes are now
being sequenced, the new genome assemblies obtained
usually do not reach the level of quality of the ones we
have for model organisms. Hence, we think that meth-
ods which do not rely on a reference genome are not
going to be easily replaced in the near future. There is
of course room for future work. The KISSPLICE algo-
rithm could be improved in several ways. The coverage
could be used for distinguishing SNPs from sequencing
errors. Moreover, the sequences surrounding the bub-
bles could be locally assembled using a third party tool
[21]. This would allow to output their context or the
full contig they belong to.
Last, the complex structure of BCCs associated to

approximate tandem repeats seems to indicate that
more work on the model and on the algorithms is
required to efficiently deal with the identification of real
approximate tandem repeat events, which may be highly
intertwined with other events.
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