Skip to main content

Machine learning approach for improvement of patient safety in surgery

Guest Editors:
Kathryn Holland: Mission Health, United States
Roy Nanz: Mission Health, United States 

Submission Status: Open   |   Submission Deadline: 1 April 2024


Patient Safety in Surgery is calling for submissions to our collection on machine learning approach for improvement of patient safety in surgery. The goal of the special issue in the journal is to provide novel insights into the understanding of machine learning and the impact on preventing patient safety events. We predict machine learning will allow health systems to improve patient safety surveillance programs by identifying patients “at risk” of sustaining preventable harm and thereby enabling the healthcare team to mitigate adverse events before they occur. 

Image credit: © [M] greenbutterfly / stock.adobe.com

Meet the Guest Editors

Back to top

Kathryn Holland: Mission Health, United States

Kathryn Holland is a Chemical Engineer and has her MS in Biochemistry. She currently uses skills from these curricula on the Clinical Process Improvement and Data Science team at Mission Health in Western North Carolina. While Kathryn has more than 5 years’ experience in this role in healthcare, she has worked for the previous 10 years in pharmaceutical manufacturing and research. Her most honorable achievement during this time was working with the HCA Mission team to attain the ELSO Gold Excellence Award for ECMO Patient Selection and Reduction of IV Narcotics in ECMO Patients by Preventing Sequestration.
 

Roy Nanz: Mission Health, United States

Roy Nanz holds BS & MS degrees in Electrical Engineering with a focus in the Control Systems Theory. Roy is also a Certified Lean Six Sigma Master Black Belt with more than 25 years of experience in many industries including pharmaceutical new product development and manufacturing. Roy is currently using his analytical and problem solving skills on the Clinical Process Improvement and Data Science team at Mission Health in Western North Carolina. Roy has been deeply involved in the clinical process improvement work at Mission Health with particular focus areas: reducing septic shock mortalities, improving stroke patient outcomes and reducing surgical site infections. In addition, Roy has been instrumental in analyzing data and applying statistics on the clinical research grants and determinants of heath studies. Roy also utilizes his statistical skills to build predictive analytical models and his superpower is simplifying the complex.

About the collection

Patient Safety in Surgery is calling for submissions to our collection on machine learning approach for improvement of patient safety in surgery. Over the past several years, there has been a paradigm shift across healthcare systems to understand the causes leading up to patient safety events including, but not limited to: surgical site infections, hospital acquired infections, falls, medication errors, and hospital acquired pressure injuries. Healthcare systems managed these events by counting the occurrence after it was reported. This data was then used to drive continuous improvement efforts to support patient outcomes and operational efficiency. Going forward, healthcare systems are shifting focus from counting patient safety related events after they have occurred, to using machine-learning algorithms to predict the patient safety event and prevent harm. 

The goal of the special issue in the journal is to provide novel insights into the understanding of machine learning and the impact on preventing patient safety events. We predict machine learning will allow health systems to improve patient safety surveillance programs by identifying patients “at risk” of sustaining preventable harm and thereby enabling the healthcare team to mitigate adverse events before they occur. 

All submissions will undergo a formal peer review by at least two qualified referees.

The scope of the special issue of the journal includes, but is not limited to, the following article types and areas of research:

- Basic predictive algorithms to identify patient safety events

- Investigation of novel multi-regression predictive analytics to identify patient safety events

- Patient safety risk factors, indications, and complication elements that are used to identify safety events before the occurrence

- Case reports that describe unusual experiences and important lessons learned while preventing patient harm

- Review articles that cover pertinent areas of research described above

  1. Patients scheduled for elective surgery typically suffer from preoperative anxiety related to the unknown environment and unclear expectations. We hypothesized that a virtual or in-person introductory visit to...

    Authors: Zеinab Asilian Bidgoli, Zohreh Sadat, Mohammadreza Zarei, Nеda Mirbaghеr Ajorpaz and Masoumеh Hossеinian
    Citation: Patient Safety in Surgery 2023 17:31
  2. The Gleason grading system is an important clinical practice for diagnosing prostate cancer in pathology images. However, this analysis results in significant variability among pathologists, hence creating pos...

    Authors: Maíra Suzuka Kudo, Vinicius Meneguette Gomes de Souza, Carmen Liane Neubarth Estivallet, Henrique Alves de Amorim, Fernando J. Kim, Katia Ramos Moreira Leite and Matheus Cardoso Moraes
    Citation: Patient Safety in Surgery 2022 16:36

Submission Guidelines

Back to top

This Collection welcomes submission of Research Articles, Data Notes, Case Reports, Study Protocols, and Database Articles. Before submitting your manuscript, please ensure you have read our submission guidelines. Articles for this Collection should be submitted via our submission system, Snapp. During the submission process you will be asked whether you are submitting to a Collection, please select Machine learning approach for improvement of patient safety in surgery from the dropdown menu.

Articles will undergo the journal’s standard peer-review process and are subject to all of the journal’s standard policies. Articles will be added to the Collection as they are published.

The Guest Editors have no competing interests with the submissions which they handle through the peer review process. The peer review of any submissions for which the Guest Editors have competing interests is handled by another Editorial Board Member who has no competing interests.