Open Access Open Badges Research article

Genetic background determines response to hemostasis and thrombosis

Jane Hoover-Plow1*, Aleksey Shchurin1, Erika Hart1, Jingfeng Sha1, Annie E Hill2, Jonathan B Singer3 and Joseph H Nadeau2

Author Affiliations

1 Department of Cardiovascular Medicine, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA

2 Department of Genetics, Case University School of Medicine, Cleveland, Ohio, USA

3 Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA

For all author emails, please log on.

BMC Blood Disorders 2006, 6:6  doi:10.1186/1471-2326-6-6

Published: 5 October 2006



Thrombosis is the fatal and disabling consequence of cardiovascular diseases, the leading cause of mortality and morbidity in Western countries. Two inbred mouse strains, C57BL/6J and A/J, have marked differences in susceptibility to obesity, atherosclerosis, and vessel remodeling. However, it is unclear how these diverse genetic backgrounds influence pathways known to regulate thrombosis and hemostasis. The objective of this study was to evaluate thrombosis and hemostasis in these two inbred strains and determine the phenotypic response of A/J chromosomes in the C57BL/6J background.


A/J and C57Bl/6J mice were evaluated for differences in thrombosis and hemostasis. A thrombus was induced in the carotid artery by application of the exposed carotid to ferric chloride and blood flow measured until the vessel occluded. Bleeding and rebleeding times, as surrogate markers for thrombosis and hemostasis, were determined after clipping the tail and placing in warm saline. Twenty-one chromosome substitution strains, A/J chromosomes in a C57BL/6J background, were screened for response to the tail bleeding assay.


Thrombus occlusion time was markedly decreased in the A/J mice compared to C57BL/6J mice. Tail bleeding time was similar in the two strains, but rebleeding time was markedly increased in the A/J mice compared to C57BL/6J mice. Coagulation times and tail morphology were similar, but tail collagen content was higher in A/J than C57BL/6J mice. Three chromosome substitution strains, B6-Chr5A/J, B6-Chr11A/J, and B6-Chr17A/J, were identified with increased rebleeding time, a phenotype similar to A/J mice. Mice heterosomic for chromosomes 5 or 17 had rebleeding times similar to C57BL/6J mice, but when these two chromosome substitution strains, B6-Chr5A/J and B6-Chr17A/J, were crossed, the A/J phenotype was restored in these doubly heterosomic progeny.


These results indicate that susceptibility to arterial thrombosis and haemostasis is remarkably different in C57BL/and A/J mice. Three A/J chromosome substitution strains were identified that expressed a phenotype similar to A/J for rebleeding, the C57Bl/6J background could modify the A/J phenotype, and the combination of two A/J QTL could restore the phenotype. The diverse genetic backgrounds and differences in response to vascular injury induced thrombosis and the tail bleeding assay, suggest the potential for identifying novel genetic determinants of thrombotic risk.