Practical examination of bystanders performing Basic Life Support in Germany: a prospective manikin study
Wiese C.H.R.1, Wylke H.1, Bahr J.1, Graf B.M.1

1Department of Anaesthesiology, Emergency and Intensive Care Medicine, University Medical Centre Göttingen

\textbf{Corresponding author:}
Christoph H. R. Wiese, MD
University Medical Centre Göttingen
Department of Anesthesiology, Emergency and Intensive Care Medicine
Robert Koch Straße 40
D-37075 Göttingen
Germany
cwiese@med.uni-goettingen.de

\textbf{Conflicts of interests:}
C Wiese and all co-authors: no conflicts of interest
Abstract

Background: In an out-of-hospital emergency situation bystander intervention is essential for a sufficient functioning of the chain of rescue. The basic measures of cardiopulmonary resuscitation (Basic Life Support – BLS) by lay people are therefore definitely part of an effective emergency service of a patient needing resuscitation. Relevant knowledge is provided to the public by various course conceptions. The learning success concerning a one day first aid course (“LSM” course in Germany) has not been much investigated in the past.

Methods: The “LSM course” was carried out in a standardised manner. We tested prospectively 100 participants in two groups in their practical abilities in BLS after the course. Success parameter was the correct performance of BLS in accordance with the current ERC guidelines. Results: Twenty-two (22%) of the 100 investigated participants obtained satisfactory results in the practical performance of BLS. Participants with repeated participation in BLS obtained significantly better results (Group 1: 32.7% vs. Group 2: 10.4%; p<0.01) than course participants with no relevant previous knowledge. Conclusions: Only 22% of the investigated participants at the end of a “LSM course” were able to perform BLS satisfactorily according to the ERC guidelines. Participants who had previously attended comparable courses obtained significantly better results in the practical test. Through regular repetitions it seems to be possible to achieve, at least on the manikin, an improvement of the results in bystander resuscitation and, consequently, a better patient outcome. To validate this hypothesis further investigations are recommended by specialised societies.

Key words
Basic Life Support, First aid course, Bystander cardiopulmonary resuscitation, Bystander Training
Introduction

Basic Life Support (BLS) by lay people has a special importance in the care of emergency patients. First aid and BLS are in the first three links of the chain of rescue [1, 2]. Even the internationally recognised “chain of survival“ includes two, in the presence of an automated defibrillator even three, of four links that have to be performed by lay people [3]. Therefore, lay help during cardiac arrest is one of the requirements for a successful resuscitation of a patient in terms of a return of spontaneous circulation (ROSC) [4-9]. However, lay people can only play their role within the chain of survival if they are adequately trained and if continuous repetitions of relevant training contents are offered and used [8, 9].

Strengthening of BLS and shortening of the therapy-free interval in emergency situations are important goals of the existing guidelines especially during resuscitation [3, 8-12]. In the current guidelines of the European Resuscitation Council [3] a simplification of BLS was recommended to reach the earliest possible start of resuscitation. Therefore the special value and importance of bystander resuscitation has been clearly confirmed in numerous studies [2, 3, 5, 7, and 8].

However, in Germany most people attend a course on emergency measures only once in their life, as at the moment there is not any legally binding repetition of such courses. Nonetheless specialised societies (such as European Resuscitation Council) try to optimise the emergency training of the population as far as possible through new algorithms and training offers [3].

Besides it is important to increase the helpfulness of lay people in emergency situations. Previous surveys showed that, due to various reasons, lay people in only 50% of the medical emergency situations they were confronted with, started to provide the necessary assistance [13, 14].

There are lots of factors influencing the behaviour of lay people in emergency situations. The feeling of competence appeared to be an essential factor for the behaviour of bystanders. The feeling of competence highly depends on the presence of theoretical and practical knowledge, which in turn must be imparted by respective courses [4, 15]. High quality of BLS training is especially important for the motivation of lay people so that as a consequence competence is increased and thus adequate help can be provided [8, 9, and 16].

Considering the great importance of first aid, in the current study we investigated to what extent lay people could perform BLS correctly in a standardised manikin scenario. The test followed after the respective one day first aid (LSM) course. It was also investigated how
course repetitions affected success in performing BLS. The test referred to the teaching contents of the course on BLS in accordance with the ERC guidelines dating from 2005 [3].
Methods

In a period of three months all 100 participants of a “LSM course” were included in the present investigation. An average of ten participants attended each course.

The duration, the contents and the teaching materials followed the guidelines for conducting “LSM courses” in Germany. These details, including trainers’ qualification, are uniformly predefined in accordance with the German Licensing Regulation, so that the courses are comparable nationwide concerning contents and time. The scheduled time for BLS amounted to 120 minutes (theory and practice). All the courses were carried out by the same instructor, guaranteeing low intraobserver bias. The course instructor held a relevant training qualification valid in Germany as a so called “First Aid instructor” and as “LSM course instructor”.

The data and results were prospectively compiled through the recording software of the resuscitation simulator (Laerdal Advanced Resuscitation Anne Skill Trainer™, Laerdal Skill Software™) as well as through video recording (DVD recorder) and were evaluated retrospectively. Technology-related deviations of the recording parameters of the resuscitation simulator were previously calculated. A tolerance of ±5% was accepted.

The data were collected with the MS Excel 2003 table calculation programme (Microsoft®, Inc. 2003). The statistical analyses were performed by using SPSS for Windows, release 12.0; SPSS, Chicago Ill. Wilcoxon signed rank test, t-test and Fisher’s exact test were used where appropriate. Descriptive values of variables are expressed as average, standard deviation and percentages. All p values of less than 0.05 were considered to indicate statistical significance. According to the declaration of Helsinki [17] data were made anonymous. An institutional review board approval exists for this study. There was a positive vote of the local ethical commission. Limitations of the cross-over design may be the period (time) effect, the sequence effect, and the treatment effect.

Written consent was obtained after information of the trainees about the investigation at the beginning of the course. All participants were included in the test. Participation in the study and the result of the test had no influence on the certification of the attendance of the course.

The main aim of the investigation was the comparison of the performance of BLS between the two defined groups (Group 1: Participants with previous attendance of a BLS course; Group 2: Participants with no previous attendance of a BLS course).

The investigation included the following target parameters:
- Checking the state of consciousness of the “patient” (manikin)
- Shout for help, knowledge of the emergency number in Germany
- Check for breathing for at least 10 seconds.
- Effective chest compression
- Effective ventilation
- Correct coordination of the compressions and ventilations.

Besides that the following demographic and further data of the participants were recorded:

1. Age
2. Sex
3. Attendance of previous BLS courses
4. Motivation concerning attendance of the course
5. No-Flow-Time (NFT); the calculated NFT resulted from the definition of the parameters of unconsciousness (15s) and the 5x2 ventilations during the scenario (10s).

The success parameters which have been previously described followed the requirements defined by ERC in the guidelines 2005 [3]. Every participant had to confirm unconsciousness, to arrange for the emergency call and to perform a cycle of cardiopulmonary resuscitation during a simulated cardiac arrest scenario on a manikin.

Chest compressions proved to be effective if 75% of the compressions were performed with a compression depth of 38-50mm and the correct hand position. Compressions had to be performed at a rate of 100/min (variation tolerance 10% corresponds to 90–110/min).

The ventilation was considered as effective if it was performed generating a tidal volume of 500-600 ml within one second per ventilation (inspiration and expiration time). By means of the computer recording of the manikin and of the video recording all ventilations performed per participant were retrospectively evaluated. As in the case of chest compression 75% correct ventilations were considered to be effective for the total evaluation. Besides that it was important that compressions and ventilations were performed at a ratio of 30:2.

Defined endpoint was the total performance of a whole resuscitation cycle including 5 x 30:2 compressions: ventilations. According to the ERC guidelines 2005 the performance of
the cycle was called successful only if it was carried out within a maximum time of 120 seconds.
Results

Within three months a total of N=100 participants were included in the study. An average of 10 participants took part in each investigated course (range 8-14 participants).

The demographic data of the participants are reported in Table 1. Both groups were comparable, allowing presenting the data collectively for all the participants.

Unconsciousness was confirmed correctly by a total of 94% of the participants; 6% forgot this step. In this respect there was no significant difference between the two groups (p>0.05).

The emergency call was correctly carried out by 65 participants (65%). Comparing the two groups 39 participants of group 1 (75% of this group) and 26 participants of group 2 (54.2% of this group) performed the emergency call correctly (p<0.05, 0.037).

After the inspection the participants had to check ventilation. This check was within 10 seconds effectively carried out by four participants (4%), all of them from the group with previous knowledge. 30% of the participants, also with previous BLS knowledge, performed a check that was not in accordance with the ERC guidelines. 66% of the participants did not check for breathing at all (18 participants with previous knowledge, 48 participants without previous knowledge). In this respect there was no significant difference between the two groups (p>0.05, 0.069).

The total time allowed for diagnostics amounted to an average of 14.3s (range 3-40s, standard deviation: 6.5s). In a total of 14 participants (14%) the time was extended since they performed two initial ventilations, as recommended in the ERC guidelines 2000 [18]. These initial ventilations were carried out only by participants with previous knowledge. Taking this into account, the time until the beginning of the chest compressions amounted to 15.8s (range 3-40s, standard deviation: 6.4s).

For performing the CPR cycle, which according to the guidelines of the ERC should not last more than 120s, the participants needed on average 131.4s (range 89-247s, standard deviation: 30.4s). Participants with previous knowledge needed 127.1s (range 97-200s, standard deviation: 23.9s), while participants without previous knowledge needed significantly more time for the performance of a CPR cycle (mean value: 136.1s, range 89-247s, standard deviation: 35.6s).

For the 30 chest compressions participants needed 18.1s (range 11.2-35.4s, standard deviation: 4.5s); there was no significant difference between the two groups (group 1: 17.8s, standard deviation: 3.8s; group 2: 18.5s, standard deviation: 5.1s; p>0.05).
For ventilation the participants needed 8.2s (range 3.8-19s, standard deviation: 2.7s) during a cycle including the changeover time between chest compressions and ventilation. Participants with previous knowledge needed significantly less time per ventilation (including the changeover time between chest compressions and ventilations) than participants with no previous knowledge (7.5s, range 3.8-12.8s, standard deviation: 1.8s vs. 8.9s range 4-19s, standard deviation: 3.2s; p<0.05).

In the whole group the NFT (time during which no chest compression was performed) amounted to 56.3s. NFT of participants with previous knowledge was significantly shorter that of participants with no previous knowledge (group 1: 52.4s, group 2: 60.7s; p<0.05).

All times are shown in Table 2 and 3.

More than 75% effective chest compressions with correct hand position, pressure depth and frequency were performed by a total of 30 participants (30%), in accordance with the 2005 ERC guidelines [3]. 22 participants with previous knowledge (44.2% of this group) performed the chest compressions correctly, significantly more than in the group of participants with no previous knowledge (8 participants, 16.7%; p<0.01). In 25% out of the latter group the hand position deviated essentially from the current guidelines, so that injuries of other organ structures might be probable.

Concerning ventilation it was expected that participants with previous knowledge would perform more correct ventilations than participants with no previous knowledge (group 1: 44.2%, group 2: 20.8%; p<0.01). The results of chest compression and ventilation are reported in Table 4.

In total, BLS (Table 5) was carried out significantly better by participants with relevant previous knowledge (p<0.01), although there was no significant difference between the groups concerning the diagnostic steps of checking for responsiveness and breathing (p>0.05). Significantly more participants with previous knowledge knew the correct emergency call number and also thought, during the simulation, of communicating early the need of help (Table 5, p<0.05).

An effective cardiopulmonary resuscitation according to the ERC guidelines 2005 [3] was performed by a total of 22 participants (22%, group 1: n=17, 32.7%; group 2: n=5, 10.4%; p<0.01).
Discussion

Four versions of BLS guidelines for adults have been published by the ERC since 1992 [3, 18, 19, and 20]. The relevant changes in the guidelines are shown in Figure 1.

A modification in the last years concerned the extent of the respiratory volume and the duration of every single ventilation [3, 18, 19, and 20] to obtain an interruption of chest compression as short as possible. In our investigation we could find that the times for every ventilation cycle (including the changeover from chest compression to ventilation) lasted on average 8.2s, adding up to more than 40s for one resuscitation cycle with 5x2 ventilations. This time represents a large part of the total NFT. A significant difference between the two groups as far as the ventilation time is concerned could not be found. With regard to some studies that reviewed critically the performance of ventilation by lay people, a revision of BLS, especially concerning ventilation, should be taken into consideration [21-24].

Importance of BLS

The most frequent causes for the necessity of bystander resuscitation are of cardiac origin [3, 25, and 26], with sudden cardiac death being the most important indication for resuscitation [25, 26]. Already in the 1950's it was demonstrated that chest compressions only could generate a ventilation flow and have a positive effect on outcome [27, 28] – a finding that justifies the early beginning of chest compression. Also in the current ERC guidelines the importance of chest compressions is stressed [3]. Assuming that mouth-to-mouth ventilation might have no positive effect on outcome [21, 23, and 24], chest compressions are the factor influencing the success of bystander resuscitation. For this reason chest compressions should be performed as early and as effectively as possible, since by correct chest compression ventricular fibrillation as well as a minimal circulation could be maintained [29, 30]. In our study only 30% of the participants performed effective chest compressions on the manikin. This shows that improvements in training are urgently needed.

A compression depth of 38-50 mm at a rate of 100 per minute is necessary for effective chest compression [3]. The pressure depth plays an important role concerning injuries of chest and abdominal organs [30]. In a previous investigation injuries of the chest (70%), of the heart and of the lungs (30%) were found post mortem in 97% of victims resuscitated by physicians [31]. In our study 25% of the participants performed potentially dangerous chest compressions with wrong hand position and a clearly too great pressure depth. Again, improvements are urgently required.
Several clinical and experimental surveys have led to various recommendations as to the importance of ventilation during BLS [3, 22-24, and 32-35]. This is still reflected in the current ERC BLS guidelines [3]. In our investigation most of the participants did not succeed in performing effective ventilation in an acceptable time interval.

The current guidelines state that within a CPR cycle of two minutes ten breaths should be given. In our study participants needed on average 8.2s for two ventilations (including the changeover time between chest compression and ventilation). Further investigations in this field to evaluate the duration of ventilation and its effectiveness during BLS should therefore be carried out and critically discussed.

Reith et al. investigated in various groups of lay people their ability to assess correctly a respiratory arrest [36]. This was the first scientific study about the effectiveness of checking for breath. In all investigated groups the quality of the check was considered insufficient so that a better training with regular repetition seemed indispensable [36]. This has been confirmed also in our investigation (96% of the investigated participants checked breathing unsatisfactorily), although it has to be critically mentioned that this has been a simulation study and the participants were aware that the “patient” (the manikin) had a respiratory arrest. In comparison with another manikin study the results could however be confirmed since in this earlier work it was shown that the participants could assess a respiratory arrest only unsatisfactorily [9]. Thus, a correct performance of checking for breathing according to the current ERC guidelines [3] seems to be a difficult procedure for a lot of lay people.

In case of a loss of vital functions CPR by lay people includes their restoration and maintenance up to the arrival of professional help. Already four to five minutes after occurrence of cardiac arrest irreversible cerebral damage may appear. Therefore resuscitation measures must begin as soon as possible, especially since average response times of the professional EMS system in Germany clearly exceed five minutes so that lay people have to bridge the gap [3, 25, and 29].

In this study only 22% of all the participants managed to perform an effective resuscitation according to the current ERC guidelines for BLS [3]. Similar results could be shown in earlier manikin studies [9]. If participants with previous knowledge in BLS are compared with participants without, significant differences appear in the effectiveness of the performance of BLS on the manikin (p<0.01) (group 1: 32.7% vs. group 2: 10.4%; p<0.01). Hence, the question of obligatory refresher courses should at least be discussed [8, 9, and 37]. However, even a modification of the course structures seems to be worth considering, as even
only 30% of the participants with previous knowledge were able to perform all BLS steps effectively on the manikin.

Weaknesses of the study

Our study has a number of inherent limitations. An investigation on a manikin can only partially be transferred to a pre-hospital situation. Therefore it is possible to have false-positive and false-negative evaluations on the manikin in comparison with reality. In studies on patient outcomes for example the effectiveness of chest compression is assessed by a palpable peripheral pulse and the effectiveness of ventilation by a raising and falling of the thorax [38-40]. However, a model of an effectiveness test in this form is not comparatively feasible, so it is necessary to make reference to validated and recommended parameters (for example pressure depth 38-50mm, tidal volume 500-600ml).

Furthermore participants in manikin exercises are aware that the “patient”does not breathe and therefore the check may possibly be carried out more ineffectively than in reality.

Besides that, stressors (psycho-social, moral and ethical) during a real cardiac arrest situation may in both directions influence the way of performing BLS. For this reason the obtained results cannot directly be transferred to a real cardiac arrest situation including outcome. However, a manikin study can indicate weak points in bystander resuscitation and in the respective first aid courses, the improvement of which should be an important aim for the future.
Conclusions
Our study has shown that most of the investigated participants even immediately after the “LSM course” were unable to transfer successfully what they had just learned in a BLS testing scenario. Participants with previous knowledge were significantly better in performing BLS than those without previous knowledge. For this reason the repetition of specific course contents seems to be essential for improvement of the resuscitation skills. In addition further simplifications of BLS (for example concentration on chest compressions) might increase the training effects as well as the effectiveness of bystander resuscitation. This should be investigated in further clinical studies including patient outcome.

Authors' contributions
CW has made substantial contributions to conception and design, analysis and interpretation of data.
HW has made substantial contributions to acquisition of data.
JB has been involved in drafting the manuscript or revising it critically for important intellectual content.
BG has made substantial contributions to conception of the investigation.

Acknowledgements
Maik Adler and Utz Bartels contributed towards the study by making substantial contributions to conception and acquisition of data.
References

4. Bahr J. “The people have only looked ... “– backgrounds not to help in cardiac arrest. Rettungsdienst 1996; 19: 6-9

27. Safar P. Ventilatory efficacy of mouth-to-mouth artificial ventilation: airway obstruction during manual and mouth-to-mouth artificial ventilation. JAMA 1958; 167: 335-341

31. Saternus KS. Direct and indirect thoracic trauma during resuscitation. Z Rechtsmed 1981; 86: 161

34. Heidenreich JW, Sanders AB, Higdon TA, Kern KB, Berg RA, Ewy GA. Uninterrupted chest compression CPR is easier to perform and remember than standard CPR. Resuscitation 2004; 63: 123-130

Practical examination of bystanders performing Basic Life Support

Tables

Table 1: Data of the participants

<table>
<thead>
<tr>
<th>Sex</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>64 (64%)</td>
</tr>
<tr>
<td>Male</td>
<td>36 (36%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age (years)</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><20</td>
<td>64 (64%)</td>
</tr>
<tr>
<td>21-30</td>
<td>12 (12%)</td>
</tr>
<tr>
<td>31-40</td>
<td>7 (7%)</td>
</tr>
<tr>
<td>41-50</td>
<td>17 (17%)</td>
</tr>
<tr>
<td>>50</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>driving licence</td>
<td>81 (81%)</td>
</tr>
<tr>
<td>Repetition/Interest</td>
<td>19 (19%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Previous knowledge (previous courses)</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>52 (52%)</td>
</tr>
<tr>
<td>No</td>
<td>48 (48%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Repetition of the course</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>significant</td>
<td>95 (95%)</td>
</tr>
<tr>
<td>not significant</td>
<td>5 (5%)</td>
</tr>
</tbody>
</table>

Table 2: Time needed for thirty chest compressions, airway management and “no flow time” (NFT)

<table>
<thead>
<tr>
<th></th>
<th>Chest compression</th>
<th>Airway management</th>
<th>NFT total</th>
<th>NFT as percent of the whole scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole participants</td>
<td>18.1s (11.2-35.4s)</td>
<td>8.2s (3.8-19s)</td>
<td>56.3s (29-113s)</td>
<td>38.5% (20.1-55.4%)</td>
</tr>
<tr>
<td>Participants with</td>
<td>17.8s (11.6-32.4)</td>
<td>7.5s (3.8-12.8s)</td>
<td>52.4s (29-86s)</td>
<td>37.1% (24.3-51.5%)</td>
</tr>
<tr>
<td>previous knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants without</td>
<td>18.5s (11.2-35.4s)</td>
<td>8.9s (4-19s)</td>
<td>60.7s (33-113s)</td>
<td>40.1% (20.1-55.4%)</td>
</tr>
<tr>
<td>previous knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p value</td>
<td>p>0.05</td>
<td>p>0.05</td>
<td>p<0.05 (0.042)</td>
<td>p<0.05 (0.039)</td>
</tr>
</tbody>
</table>
Table 3: Time needed for cardiopulmonary resuscitation (1 cycle over 120 seconds corresponding to each time 5x30 chest compressions and 5x2 ventilations [with no consciousness checking])

<table>
<thead>
<tr>
<th></th>
<th><120sec</th>
<th>120-130sec</th>
<th>131-140sec</th>
<th>141-150sec</th>
<th>151-160sec</th>
<th>>160sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole participants</td>
<td>41 (41%)</td>
<td>13 (13%)</td>
<td>17 (17%)</td>
<td>10 (10%)</td>
<td>6 (6%)</td>
<td>13 (13%)</td>
</tr>
<tr>
<td>Participants with previous knowledge</td>
<td>23 (44.2%)</td>
<td>7 (13.5%)</td>
<td>11 (21.2%)</td>
<td>5 (9.6%)</td>
<td>2 (3.8%)</td>
<td>4 (7.7%)</td>
</tr>
<tr>
<td>Participants without previous knowledge</td>
<td>18 (37.5%)</td>
<td>6 (12.5%)</td>
<td>6 (12.5%)</td>
<td>5 (10.5%)</td>
<td>4 (8.3%)</td>
<td>9 (18.7%)</td>
</tr>
<tr>
<td>p value</td>
<td>p>0.05</td>
<td>p>0.05</td>
<td>p>0.05</td>
<td>p>0.05</td>
<td>p>0.05</td>
<td>p>0.05</td>
</tr>
</tbody>
</table>

Table 4: Effectiveness of diagnostics, airway management and chest compression

<table>
<thead>
<tr>
<th>Measure</th>
<th>Participants with previous knowledge (n=52)</th>
<th>Participants without previous knowledge (n=48)</th>
<th>p value</th>
<th>whole participants (n=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>effective</td>
<td>effective</td>
<td>effective</td>
<td>effective</td>
</tr>
<tr>
<td>Reaction</td>
<td>50 (96.2%)</td>
<td>44 (91.7%)</td>
<td>p>0.05</td>
<td>94 (94%)</td>
</tr>
<tr>
<td>Emergency call</td>
<td>39 (75%)</td>
<td>26 (54.2%)</td>
<td>p<0.05</td>
<td>65 (65%)</td>
</tr>
<tr>
<td>Breath control</td>
<td>4 (7.7%)</td>
<td>0 (0%)</td>
<td>p>0.05</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>Chest compression</td>
<td>22 (42.3%)</td>
<td>8 (16.7%)</td>
<td>p<0.01</td>
<td>30 (30%)</td>
</tr>
<tr>
<td>Airway management</td>
<td>23 (44.2%)</td>
<td>10 (20.8%)</td>
<td>p<0.01</td>
<td>33 (33%)</td>
</tr>
</tbody>
</table>

Table 5: BLS effectiveness

<table>
<thead>
<tr>
<th></th>
<th>effective</th>
<th>non effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole participants (n=100)</td>
<td>22 (22%)</td>
<td>78 (78%)</td>
</tr>
<tr>
<td>Participants with previous knowledge (n=52)</td>
<td>17 (32.7%)</td>
<td>35 (67.3%)</td>
</tr>
<tr>
<td>Participants without previous knowledge (n=48)</td>
<td>5 (10.4%)</td>
<td>43 (89.6%)</td>
</tr>
<tr>
<td>p value</td>
<td>p<0.01</td>
<td>p<0.01</td>
</tr>
</tbody>
</table>
Practical examination of bystanders performing Basic Life Support

Figures

Figure 1: Differences of the guidelines

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ascertainment of</td>
<td>Ascertainment of</td>
<td>Ascertainment of</td>
<td>Ascertainment of</td>
</tr>
<tr>
<td>consciousness</td>
<td>consciousness</td>
<td>consciousness</td>
<td>consciousness</td>
</tr>
<tr>
<td>Breath check</td>
<td>Breath check</td>
<td>Breath check</td>
<td>Call for help</td>
</tr>
<tr>
<td>Pulse check</td>
<td>2x ventilation</td>
<td>Emergency call</td>
<td>Ventilation/Circulation parameters check</td>
</tr>
<tr>
<td>Emergency call</td>
<td>Pulse check</td>
<td>2x Ventilation</td>
<td>Emergency call</td>
</tr>
<tr>
<td>2x Ventilation</td>
<td>Emergency call</td>
<td>Circulation parameters check</td>
<td>Chest compression</td>
</tr>
<tr>
<td>Chest compression</td>
<td>Chest compression</td>
<td>Chest compression</td>
<td>Cardiopulmonary resuscitation (30:2)</td>
</tr>
<tr>
<td>Cardiopulmonary resuscitation (15:2)</td>
<td>Cardiopulmonary resuscitation (15:2)</td>
<td>Cardiopulmonary resuscitation (15:2)</td>
<td></td>
</tr>
</tbody>
</table>

[3, 18, 20, and 21]