Effects of age and leg length upon central loop of the Gastrocnemius-soleus H-reflex latency

AUTHORS:

SHAHRAM SADEGHI 1
M.R.A. GHAVANINI 2
ALIREZA ASHRAF 3
PEYMAN JAFARI 3

AFFILIATIONS:

1: PAIN RESEARCH GROUP, MULTIDISCIPLINARY PAIN CLINIC OF IRAN JAHAD DANESH GAHI, NO 31, KARIMKHAN ZAND AVE. SHAHID HOSSEINI ALLEY, TEHRAN, IRAN

2: DEPARTMENT OF PHYSICAL MEDICINE AND REHABILITATON, SHIRAZ MEDICAL SCHOOL, ZAND AVENUE, SHIRAZ, IRAN

3: DEPARTMENT OF BIOSTATISTICS, SHIRAZ MEDICAL SCHOOL, ZAND AVENUE, SHIRAZ, IRAN

CORRESPONDING AUTHOR: SHAHRAM SADEGHI

EMAIL ADDRESSES:

SHAHRAM SADEGHI: SSHADEGHI@SUMS.AC.IR
M.R.A. GHAVANINI: alavianm@sums.ac.ir
ALIREZA ASHRAF: ALIREZAAASHRAF@YAHOO.COM
PEYMAN JAFARI: PIBIOSTAT@YAHOO.CO.UK

Background: central loop of the gastrocnemius-soleus H-reflex latency (Tc) that looks promising in the diagnosis of S1 radiculopathy; has been investigated in a few studies and only two of them have focused on the constitutional factors affecting it. Although leg length has been shown to contribute to the Tc, the role of age is controversial. More confusing, none of the previously performed studies have used strict criteria to rule out subclinical neuropathy, so the results could be misleading. This study has been performed to determine the influence of leg length and age on Tc among a carefully selected group of healthy volunteers.
**Methods:** after screening forty six volunteers by taking history, physical examination and a brief electrophysiologic study; forty of them were selected to enroll into the study. $T_c$ was obtained in all the study subjects and leg length and age were recorded for correlational analyses.

**Results:** this group was consisted of 26 males (65%) and 14 females (35%) with the age range of 19-65 years (Mean±SD: 37 ± 10.7) and leg length range of 29.5-43 centimeters (36.4±3.4). Mean±SD for $T_c$ was 6.78±0.3. We found a significant correlation between $T_c$ and leg length ($p$ value= 0.003, $r$=0.49 and confidence interval 95% = 0.59-0.88), no significant correlation was found between age and $T_c$ ($p$ value= 0.48, $r$=0.11), also we obtained the regression equation as: $T_c=0.04L + 5.28$

**Conclusions:** in contrast to leg length, age was not correlated with $T_c$. Future studies are required to delineate other contributing factors to $T_c$.

**Keywords:** central loop of gastrocnemius-soleus H-reflex latency, Central S1 loop latency, sacral radiculopathy.

**Background**

The H-Reflex evaluates $S_1$ radiculopathy [1]. The measured latency, however, is neither specific nor sensitive for $S_1$ spinal nerve disease, as it traverses a long pathway. Pease et al [2] were the first who described the central loop of the gastrocnemius-soleus H-Reflex latency (Central $S_1$ loop latency or $T_c$) and suggested it might be promising in the diagnosis of S1 radiculopathy [1,2]. Unfortunately, $T_c$ has been the subject of few studies, and as far as we know, only 5 articles [2,3,4,5,6] have been published on this issue so far.
Among them, two have specifically evaluated the constitutional factors contributing to Tc. Leg length has been shown to have a significant effect on Tc. It is controversial whether age entails a similar effect. Wang et al [5] found a direct correlation between age and Tc. This observation was not confirmed by Ghavanini et al in an independent study [6]. The current study has been performed to determine the influence of leg length and age on Tc.

**Methods**

We enrolled 46 volunteers to this study after obtaining informed consent. Following a standard history taking, all of them underwent physical examination and a brief electrophysiologic evaluation [7] to rule out asymptomatic polyneuropathy, including determination of: right peroneal nerve conduction velocity (PNCV), distal motor latency of right deep peroneal nerve (PDML) and standard gastrocnemius-soleus H reflex latency (Tp). We defined our exclusion criteria as: history of sacral radiculopathy or diabetes mellitus or any other disease with potential to cause neuropathy, any abnormality in neurological or musculoskeletal physical examination, or any of the following findings: PNCV less than 40m/s, PDML more than 5 ms or prolonged Tp (according to Braddom and Johnson’s study [8].
Since we were supposed to rule out subclinical peripheral neuropathy and one component of the related electrodiagnostic study was measuring the distal motor latency for the deep peroneal nerve, the temperature at the dorsum of the foot was kept almost at 32° Celsius.

The leg length of each person was measured as the distance from middle of the midpopliteal crease to the point at the most proximal part of the medial malleolus, in centimeters.

Subject’s age to the nearest year was also recorded.

For obtaining $T_c$, we used DANTEC 2000c equipment, the sensitivity, sweep, and filter were set at: $0.2-1^{\text{mv/\text{div}}}$, $5^{\text{ms/\text{div}}}$, and $2-10,000$Hz respectively. The technique was the same as described in the Literature [1,2]. Briefly: the volunteers lied prone on the examining table with the feet off the edge of the plinth. The $E_1$ was placed at the middle of the line connecting midpoint of popliteal crease to the point at the most proximal part of the medial malleolus, and the $E_2$ over the Achilles tendon (both were surface electrodes). The ground electrode was posed proximal to $E_1$ and a disc electrode (anode) was placed on the anterior superior iliac spine. Then we inserted a monopolar $70^{\text{mm}}$ needle (cathode) at a point $1^{\text{cm}}$ medial to the posterior superior iliac spine, perpendicular to the frontal plane, and retracted it just a little after reaching the sacrum. Stimulus duration of $1$ ms at $0.5$ HZ was then
applied while increasing current intensity to obtain both H and M waves simultaneously. M wave is the earlier wave and H is the later one. The interpeak latency was measured in milliseconds (ms) and recorded as $T_c$. This measurement was only performed on the right lower extremity.

Descriptive statistics were applied to depict Mean±SD of age, leg length and $T_c$. The independent effect of leg length and age on $T_c$ was assessed by multiple regression model. The analyses were performed using SPSS 10.0 software. Kolmogrov-Smirnov test was used for evaluating the normal distribution of the variables.

**Results**

From 46 subjects who volunteered to participate in this study; five cases were excluded after history taking and physical examination (two because of history of sacral radiculopathy, two because of diabetes mellitus and one because of asymmetry in ankle reflexes) and one case after electrophysiologic evaluation; thus we completed the study with 40 subjects. Subjects’ characteristics are shown in table1. The group consisted of 26 males (65%) and 14 females (35%). Kolmogrov-Smirnov test showed normal distribution of the variables. You are provided with the information below: (Mean±SD)

Age: 37.0±10.7 years (range: 19-65);
leg length: 36.4±3.4 cm (range: 29.5-43); Tc= 6.78±0.3

There was a significant correlation between Tc and leg length
(P value = 0.003, r= 0.49, CI 95% = 0.59-0.88).

There was no correlation between Tc and age (p value = 0.48, r=0.11)

We also found this regression equation: Tc=0.04L + 5.28

(L is leg length in centimeters, Tc is represented in milliseconds.)

**Discussion**

In this study we found a significant correlation between leg length and Tc, but we were unable to show such a relation between age and Tc.

Pease et al were the first, studied Tc [2,4], and reported Mean±SD of 7±0.3ms which is very close to our results (Tc= 6.78±0.3). They didn’t specifically consider the leg length, age or any other potential confounding variables to Tc.

Zhu et al [3] evaluated 60 persons and reported Mean Tc: 6.8ms and its SD: 0.33 ms, again close to our results. They also reported that Tc and person's height were correlated but didn't study any correlation between age and Tc.

Wang et al [5] evaluated 40 persons and found this regression equation:
$T_c = 0.02A + 0.003H + 0.92$ (H: Height and A: Age), and stated that age is a contributing factor on $T_c$.

Another research was performed by Ghavanini et al [6], in which 39 subjects were evaluated. The reported $T_c \pm SD$ was $6.9 \pm 0.4$; two regression equations were also suggested: $T_c = 0.097T_p + 4.045$ and $T_c = 0.051L + 4.92$ (L=leg length in centimeters); results are close to ours, and age was not found to affect $T_c$.

A summary of the above data plus detailed demographic data are provided in the table 2.

**Limitations:** In this study we focused on age and leg length as potential contributing factors on the $T_c$. we didn’t control, randomize or observe other possible confounding (contributing) factors with potential to affect this parameter.

We observed a significant correlation between leg length and $T_c$ ($P$ value $= 0.003$, $r = 0.49$, CI 95% $= 0.59-0.88$), that is compatible to a previous published work [3] ($r=0.54$, $p$ value less than 0.01).

Had we found any association between $T_c$ and age, the question might have been raised that subclinical neuropathy of old age could have been contributive; obviously, this is not the case in our study.
Although F-wave has been used to evaluate the possibility of proximal neuropathy; it was not measured in this study. Alternatively, we measured H-reflex latency to exclude proximal neuropathy [11].

It should be emphasized that noninvasive methodologies for the diagnosis of subclinical S1 radiculopathy are now available [12]. It is also acceptable to stimulate the S1 spinal nerve at the S1 foramen by magnet, instead of deep tissue needling; nevertheless, we used more popular techniques for this study.

**Conclusions**

We found that between age and leg length, only the latter can affect T_c. It may be reasonable to consider leg length for calculating T_c and to “narrow” the normal limits.

Further studies with larger sample sizes are required for detecting other contributing factors and standardizing T_c according to leg length.

**Competing interests**

None

**Abbreviations**

T_c: central loop of the gastrocnemius-soleus H-Reflex latency
Tp: gastrocnemius-soleus H-Reflex latency

PNCV: right peroneal nerve conduction velocity

PDML: right peroneal nerve distal motor latency

**Authors’ contribution**

SS: examining the cases, calculation of TC, writing the paper.

MRAG: suggesting the research, supervision and helping with calculation of TC.

AA: examining the cases, calculation of TC

PJ: statistical consultant (data analysis)

**Acknowledgements**

The authors would like to thank:

Ali Bidari, MD, assistant professor of rheumatology, Iran university of medical sciences, for his great help in the revision of the manuscript

Mojtaba Mahjoob, MD, resident of surgery, and Masoome Rostamzade, English instructor, for translating the manuscript.
REFERENCES


Table 1, subjects’ characteristics

<table>
<thead>
<tr>
<th>Number of subjects</th>
<th>40 (26 males, 14 females)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age range (years)</td>
<td>19-65</td>
</tr>
<tr>
<td>Leg length (centimeters)</td>
<td>29.5-43</td>
</tr>
<tr>
<td>$T_c \pm SD$</td>
<td>6.78 ± 0.3</td>
</tr>
</tbody>
</table>

Table 2: comparing related studies

<table>
<thead>
<tr>
<th></th>
<th>Subjects’ characteristics</th>
<th>$T_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group size (persons)</td>
<td>Mean age (yr)</td>
</tr>
<tr>
<td>Present study</td>
<td>40</td>
<td>37.0</td>
</tr>
<tr>
<td>Pease et al[2]</td>
<td>20</td>
<td>?</td>
</tr>
<tr>
<td>Zhu et al[3]</td>
<td>60</td>
<td>43</td>
</tr>
<tr>
<td>Ghavanini et al [6]**</td>
<td>39</td>
<td>41</td>
</tr>
</tbody>
</table>

A: age (yr); L: leg length (cm); H: height (cm); Tc: central loop of the H-reflex latency (ms);
M: male; F: female; No: no correlation was found; ?: not reported

*: suggested a regression equation: $T_c=0.02A+0.03H+0.92$

**: Suggested two regression equations: $T_c=0.051L+4.928$; $T_c=0.097Tp+4.04$