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Abstract

Background: Bacteriophages are known to be one of the driving forces of bacterial evolution. Besides promoting
horizontal transfer of genes between cells, they may induce directional selection of cells (for instance, according to
more or less resistance to phage infection). Switching between lysogenic and lytic pathways results in various types
of (co)evolution in host-phage systems. Spatial (more generally, ecological) organization of the living environment is
another factor affecting evolution. In this study, we have simulated and analyzed a series of computer models of
microbial communities evolving in spatially distributed environments under the pressure of phage infection.

Results: We modeled evolving microbial communities living in spatially distributed flowing environments. Non-specific
nutrient supplied in the only spatial direction, resulting in its non-uniform distribution in environment. We varied the
time and the location of initial phage infestation of cells as well as switched chemotaxis on and off. Simulations were
performed with the Haploid evolutionary constructor software (http://evol-constructor.bionet.nsc.ru/).

Conclusion: Simulations have shown that the spatial location of initial phage invasion may lead to different evolutionary
scenarios. Phage infection decreases the speciation rate by more than one order as far as intensified selection blocks the
origin of novel viable populations/species, which could carve out potential ecological niches. The dependence of
speciation rate on the invasion node location varied on the time of invasion. Speciation rate was found to be lower
when the phage invaded fully formed community of sedentary cells (at middle and late times) at the species-rich
regions. This is especially noticeable in the case of late-time invasion.
Our simulation study has shown that phage infection affects evolution of microbial community slowing down speciation
and stabilizing the system as a whole. This influencing varied in its efficiency depending on spatially-ecological factors as
well as community state at the moment of phage invasion.

Keywords: Microbial community, Bacteria, Archaea, Bacteriophage, Phage, Ecological simulation, Evolution, Evolutionary
modeling, Prokaryotes

Background
Bacteriophages are known to be one of the driving forces
of bacterial evolution [1–3]. It is generally thought that
phages are responsible for about 10–50 % of the total bac-
terial mortality in surface waters, and 50–100 % in envi-
ronments that are unfriendly to protists, such as low-

oxygen lake waters [4]. Besides promoting horizontal
transfer of genes between cells [5–7], they may induce ei-
ther directional selection of cells [8], for instance, accord-
ing to more or less resistance to phage infection [9–12],
or fluctuating selection [10, 13]. Switching between lyso-
genic and lytic pathways results in various types of (co)-
evolution in bacterial cell-phage systems [14, 15]. Spatial
(more generally, ecological) organization of the living en-
vironment is another factor affecting evolution [16–18]. A
number of studies, both experimental and theoretical have
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recently been published on various aspects of phage-
bacteria evolution.
The population mixing increasing host exposure to

phages via selection for greater resistance and infectivity
ranges was proved to promote arms-race dynamics [13].
It explains the variation in coevolutionary dynamics be-
tween different host–parasite systems, and more specif-
ically the observed discrepancies between laboratory and
field bacteria–virus coevolutionary studies [13]. Using a
spatially explicit, individual-based model, it was shown
that less infective pathogens may have an advantage in
spatially structured populations, even when well-mixed
models predict that they will not [19].
In a time-shift experiment with both sympatric and allo-

patric phages from either contemporary or earlier points in
the season, it was demonstrated that bacterial resistance is
higher against phages from the past, regardless of spatial
sympatry or how much earlier in the season phages were
collected [20]. It was also shown that future bacterial hosts
are more resistant to both sympatric and allopatric phages
than contemporary bacterial hosts. Nutrients availability
was both theoretically and experimentally shown to affect
the relative extent of escalation of resistance and infectivity
(arms race dynamic) and fluctuating selection (fluctuating
selection dynamic) in experimentally coevolving popula-
tions of bacteria and viruses [21]. Scanlan and colleagues
have shown that in addition to affecting genome-wide evo-
lution in loci not obviously linked to parasite resistance,
coevolution can also constrain the acquisition of mutations
beneficial for growth in the abiotic environment [22]. The
conditions for achieving coexistence on the edge between
two habitats, one of which is a bacterial refuge with condi-
tions hostile to phage whereas the other is phage friendly
were theoretically studied in [23]. They analyzed how bac-
terial density-dependent, or quorum-sensing, mechanisms
such as the formation of biofilm can produce such refuges
and edges in a self-organized manner.
A multiscale model of dynamic coevolution between

hosts and viruses in an ecological context incorporating
CRISPR immunity principles was presented in [24]. Hosts
and viruses were shown to coevolve to form highly diverse
communities. They observed evolutionary dynamics con-
sistent with both incomplete selective sweeps of novel
strains (as single strains and coalitions) and the recurrence
of previously rare strains. Coalitions of multiple dominant
host strains were predicted to arise because host strains
can express nearly identical immune phenotypes mediated
by CRISPR defense albeit with different genotypes [24].
The evolution of generalism in well-mixed populations
was found to be highly sensitive to the severity of associ-
ated fitness costs, but the constraining effect of costs on
the evolution of generalism is lessened in spatially struc-
tured populations [25]. The contrasting outcomes be-
tween the two environments was explained by different

scales of competition (i.e., global vs. local). They suggested
that local interactions may have important effects on the
evolution of generalism in host-parasite interactions, par-
ticularly in the presence of high fitness costs [25].
In our previous study [26] we modeled the opposite

trends of genome amplification/simplification occurred in
microbial communities via gene horizontal transfer/gene
loss. It was demonstrated that species with reduced ge-
nomes tend to replace genetically and metabolically rich
species under highly favorable environmental conditions.
Under unfavorable conditions, the opposite tendency was
observed. It was also shown that phages invasion into the
system radically changed the current evolutionary trends.
A wide range of mathematical and computational

techniques is used for modeling and simulation of
phage-bacterium systems. There are both classical
ODE/PDE approaches (see examples in [11, 27–31])
and modern agent-based and/or multiscale approaches
(see examples in [19, 23, 25, 32, 33]).
In this study, we have built and simulated a series of

computer models of microbial communities evolving in
spatially distributed environments under the pressure of
phage infection. Communities inhabited spatially distrib-
uted flowing environments. Non-specific nutrient supplied
in the only spatial direction, resulting in its non-uniform
distribution in environment. We varied the time and the
location of initial phage invasion as well as switched
chemotaxis on and off and observed that these factors
may lead to different evolutionary scenarios.

Methods
Model overview
We have used the Haploid evolutionary constructor
(HEC) [34, 35] to build the model and to perform the
simulations. The HEC models microbial community
consisting of different microbial species which we call
populations. The hierarchical scheme of HEC models is
shown in Fig. 1. Each population consists of cells sharing
the same metabolic specificity i.e. nutrients consumed
and products secreted. We assume that metabolic path-
ways of substrates utilization and products synthesis
controlled by corresponding gene networks are the same
for all cells of a population. Therefore, we consider
genes just as numerical parameters of these gene net-
work models. The parameters may be responsible for ef-
ficiency of either utilization or synthesis of metabolites.
Note that the HEC architecture provides various math-
ematical formalisms to be used to describe a gene net-
work model mathematically (see details in [35]). In this
case, mutations just change the numerical value of a cer-
tain parameter in one or several cells (which is inter-
preted as an origin of novel allelic variant) resulting in
genetic polymorphism in a population. On the other
hand, selection of more fit allelic combinations leads to
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the extinction of weaker alleles decreasing the poly-
morphism. Horizontal transfer of genes between cells of
different populations is modeled in HEC via rearrange-
ment of recipient cell’s gene network by embedding add-
itional nodes into this network (Fig. 2). Loss of genes is
modeled in the same manner, nodes, of course, are de-
leted. We suppose in our model, that such events of
horizontal gene transfer and gene loss are associated

with the origin of novel species as they significantly
change the metabolic properties of cells. Technically, we
use in HEC the super-individual concept [36, 37].

Spatially distributed habitats
We describe the spatial organization of environment by
a grid of so-called point environments or nodes – small
well-mixed volumes containing cells, phage particles and
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Fig. 1 The hierarchical scheme of the HEC model (according to [35, 38])
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Fig. 2 Simulation of horizontal gene transfer in the HEC (according to [40])
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substances. These volumes exchange their contents af-
fected by diffusion and flow as well as during the bacter-
ial chemotaxis activity (Fig. 3, detailed description in
[38]). Flow is a directed force mixing contents of the
spatial system and drawing particles from its beginning
to the end. On the contrary diffusion is considered as
undirected dissemination of the point environment’s
contents. Chemotaxis is an ability of bacterial cells to
move towards the attractants and away from repellents,
i.e. a capacity to move to a habitat with more chemically
beneficial conditions. Such a grid of multiple well-mixed
volumes is capable to simulate heterogeneous distribu-
tions of cells, substances and phage particles.
We considered 2D spatially distributed flowing habitat

represented as a 5x5 grid (Fig. 3). In-flow supplies the
habitat with non-specific nutrients we call non-specific
substrates through the upper and leftmost nodes. The
flow and diffusion then spread nutrients over all other
nodes of the habitat including not only non-specific sub-
strates, but also metabolites synthesized and secreted by
cells (specific substrates). Cells themselves are also pas-
sively transported by the flow and diffusion, but add-
itionally may move via chemotaxis (details in [38]).
Thus, the (1,1) node and its neighbors may be consid-
ered as nutrient-rich (in terms of non-specific sub-
strates), while the (5,5) node and its neighbors are
nutrient-poor (in the same terms). Here and after let us
call the (1,1) node as the “top”, the (3,3) – “middle”, and
the (5,5) – “bottom” of the habitat. It should be noted

that we have tested the 10 × 10 and 20 × 20 habitats and
found no principal difference with the 5 × 5 case.

Modeling bacteriophage infection
In the HEC, bacteriophages (phages) are described using
special type of populations – phage populations, which
are capable to infect microbial cells. In this particular
case the phage was able to infect those cells which are
capable to utilize S1 substrate. The infection process in-
cludes the following stages:

1. infestation of healthy cells by phage invasion (from
environment into some cells of a population);

2. phages reproduction inside the infected cells;
3. phage burst after cell lysis.

Infected cells may develop then according to either lytic
or lysogenic pathway. In the first case, the infected cells
die bursting new phages into the habitat. In the second
case, on the contrary, no cell die, phage genes are inte-
grated into cell genome and the cells become prophages.
The choice of lysogenic or lytic scenarios depends on en-
vironmental conditions and cells well-being at the mo-
ment of infestation (it is in accordance with biologically
known facts [39]). Under favorable conditions, in the case
of a positive population dynamics ensured by high envir-
onmental substrate concentrations and/or better genetic
adaptation compared to other populations, the infection
process occurs along the lytic pathway. Otherwise, under

Non-specific 
substrate 

Fig. 3 Spatial organization of the habitat. Mesh of 5х5 nodes. The flow determines the gradient of non-specific substrates. Green arrows depict the directions
of diffusion. Red arrows show an example of chemotactic behavior of cells
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unfavorable conditions, infection takes the lysogenic path-
way. Later, if the conditions are improved, a part of the
population may switch to the lytic pathway, which is
followed by the death of this part of the population and
generation of phages. The detailed description of the mod-
eling technique for phages in the HEC is presented in
[26]. In this study, we considered invasion of phages vary-
ing both the moment of invasion and its localization.

Results and discussion
Using the approach described above, we have developed
a model of spatially distributed microbial community
under bacteriophage attack. We started simulations with

the simple symbiotic community of three different popu-
lations (Fig. 4) uniformly inhabited spatially distributed
2D environment (Fig. 3).
In the course of evolution the processes of horizontal

gene transfer and gene loss stochastically simulated. It
was associated with the origin of novel species (see de-
tails in the previous chapter). Initial environmental con-
ditions promoted the origin of species possessing more
and more complex genomes built combinatorically from
relatively simple genomes of initial cells, as it was previ-
ously studied in [40]. We varied the time of initial phage
invasion as well as its localization. The main questions
we wanted to discover were the following:

� how does the phage invasion affect the ecological-
evolutionary trends taking course in the
community?

� what is the role played by spatial factors in found
effects?

� is the bacteriophage an impediment for microbial
communities’ evolution?

Varying the time of initial phage invasion, we have
found that infestation in general inhibits speciation, and
after a certain time the species composition and the size
of the community become stationary (Fig. 5, Additional
file: 1). It looks as if the phages stop the evolution of the
community. It should be noted that we talk about speci-
ation in terms of variation of gene set involved in meta-
bolic networks and the evolution of immune
mechanisms is out of scope in this simulation study. It
explains why we observe decrease in a speciation rate
under phage invasion conditions whereas other studies
[2] putting an emphasis on the evolution of defense and

Fig. 4 Trophic graph of the initial community. N1 – non-specific
substrate consumed by all populations (P1, P2, P3) of the community.

S1, S2, S3 – specific substrates synthesized by corresponding cells. P1S2

S2P2 means that cells of P1 population produce S2 substrate, which is
consumed by cells of P2 population
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Fig. 6 Average number of species (up) and biomass (down) over the first 5000 generations in various nodes (see also the script in Additional file 3)

Table 1 Average SRI values before and after phage invasion in various habitat locations (see Additional file 4). First 1000 generations
has not been taken into account as there is a bias associated with high initial speciation

Early-time (1st generation) Middle-time (5000th generation) Late-time (6600th generation)

Into node (1,1) SRI before SRI after SRI before SRI after SRI before SRI after

- 0.856e-3 6.850e-3 0.520e-3 7.143e-3 0.529e-3

Into node (3,3) SRI before SRI after SRI before SRI after SRI before SRI after

- 0.744e-3 7.275e-3 0.400e-3 7.946e-3 0.206e-3

Into node (5,5) SRI before SRI after SRI before SRI after SRI before SRI after

- 0.578e-3 8.250e-3 0.600e-3 6.964e-3 0.412e-3
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counter-defense strategies provide evidences of increas-
ing phage and bacterial evolution rate. The other pos-
sible reason of the discrepancy is because we focused
primarily on interactions between bacteria and temper-
ate phages, rather than lytic phages as it has been done
in the above-mentioned case.
We obtained the same results when chemotaxis was

switched on/off. This effect has been estimated using the
Speciation Rate Index (SRI), which was calculated ac-
cording to the following formula (see also script file in
Additional files):

SRI ¼ ∥ pf jp‐newly emerged viable populationsg∥
time span

ð1Þ

where time_span is the period speciation rate is esti-
mated about; a population is assumed to be viable if it
survived over a period of thres generations (where thres
is a threshold value, in our case, 500). According to the
equation 1, the higher SRI is, the more intensive the

speciation is over this time period. Conversely, the lower
SRI is, the fewer viable species originate in time.

Chemotaxis-off case
Initially, we have estimated SRI in all spatial nodes of the
habitat in the absence of phage invasion (Fig. 5). Fig. 5
shows that speciation rate growth according to moving
away from the in-flow (top) nodes. It could be explained
by the fact that in top nodes there are several populations,
which effectively utilize the non-specific substrate. These
population have got dominate biomass. At the same time,
novel ecological licenses associated with high concentra-
tions of specific substrates arise in middle and top nodes
due to transportation via the flow. It opens possibilities for
fixation of novel species specialized on utilization of those
specific substrates. That is to say, in distant, bottom
nodes, higher biodiversity is associated with low biomass
(Fig. 6).
After that, we have analyzed how the phage invasion

affects speciation rate and species richness. Results ob-
tained show the dependency of speciation rate on inva-
sion parameters (Table 1).
Table 1 shows that phage invasion results in de-

crease of speciation rate by more than one order. As
is easy to see the time dependency of speciation rate
varies with the distance between the node and in-flow
location:

1. In the case of early-time invasion, there is an inverse
dependence – the farther the place of invasion, the
less the speciation rate after infestation (Fig. 7).

2. In the case of middle-time invasion, the lowest spe-
ciation rate is observed when the phage invades the
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Fig. 7 Dependence of SRI on time of invasion and invasion initial localization. Blue plot – early-time (1st generation), orange –middle-time (5000th generation),
grey – late-time (6600th generation). X-axis – number of the node of initial invasion, Y-axis – average SRI calculated up to the end of simulation

Table 2 Average SRI calculated over the whole simulation time
with respect to the initial invasion location (see Additional file 4)

Early-time
(1st generation)

Middle-time
(5000th generation)

Late-time
(6600th generation)

Into node
(1,1)

1.3030e-3 5.6061e-3 6.5657e-3

Into node
(3,3)

1.1717e-3 5.8687e-3 7.2121e-3

Into node
(5,5)

1.2828e-3 6.3333e-3 6.8081e-3
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central node (3,3) of the habitat. It is notable that if
the phage invades the most bottom node (5,5), then
average SRI becomes higher compared to the most
top node (1,1).

3. In the case of late-time invasion, results look similar
to the previous case except that average SRI is lower
when the phage invaded central and bottom nodes.

As it was previously said, distant nodes are character-
ized by higher concentrations of the specific substrates.
Therefore, these results are in accordance with earlier
reported [41] suggestion that the viral effect is probably
larger in eutrophic waters than in oligotrophic waters.
Table 2 shows that in the case of middle-time invasion,

average SRI increases from top (1,1) nodes (non-specific
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substrate-rich) to bottom (5,5) nodes (non-specific
substrate-poor). Additional plots (see Additional file : 2)
show that the phage invasion leads to drastic reduction
of species richness of the community. The data confirm
that SRI as well as species richness are higher in the ab-
sence of phages and when there are many ecological
licenses.

Chemotaxis-on case
In cases when chemotaxis is switched on (see
Additional file 5), the spatial stratification of a com-
munity in terms of biomass is more expressed. We
hypothesize that this is due to the observed accumulation
of specific substrates in nodes close to the bottom of the
habitat. Anyway, the distributions of species richness and
SRI in general look similarly to the corresponding distri-
butions obtained for the previous case. However, the
spatial differences here are more evident (Fig. 8). On the
other hand, the total species number as well as SRI in this
case (chemotaxis is on) are definitely lower compared to
the previous case (chemotaxis is off). It is in good agree-
ment with evolutionary biology data postulating that mi-
gration impedes speciation while isolation promotes it
[42–44].
Figure 9 shows that phage invasion into the bottom

node (5,5) led to the growth of speciation rate both for
early-time and late-time cases. It is related to the
observed fact that the phage infection could not fixate in
the habitat when invaded into bottom nodes. However,
in the chemotaxis-on case, if the phage invaded top

nodes, the species richness observed to be higher in
bottom nodes.

Conclusions
In this simulation study, we have shown that bacte-
riophages may act as constraining factors of microbial
community evolution. Phage infection decreases the
speciation rate by more than one order as far as in-
tensified selection blocks the origin of novel viable
populations/species, which could carve out potential
ecological niches. At the same time, phages act as a
stabilizing factor suspending superfluous speciation
and encouraging stationary state of the system (in
terms of species number).
It has also been shown that the dependence of speci-

ation rate on the invasion node location varied on the
time of invasion. Speciation rate is found to be lower
when the phage invaded fully formed community (mid-
dle and late times) at the species-rich nodes (central
node (3,3)). This is especially noticeable in the case of
late-time invasion.
Those dependencies differ in the case of chemotaxis

switched on. In both early-time and late-time cases, the
speciation rate remains relatively high when phage in-
vaded bottom nodes. This phenomenon requires add-
itional investigations.
As a result, our simulation study shows that phage in-

fection affects evolution of microbial community slow-
ing down speciation and stabilizing the system as a
whole. This influence varied in its efficiency depending
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Fig. 9 Dependence of SRI on time of invasion and invasion initial localization (chemotaxis is on). Blue plot – early-time (1st generation), orange –
middle-time (5000th generation) , grey – late-time (6600th generation). X-axis – number of the node of initial invasion, Y-axis – average SRI calculated
up to the end of simulation (built according to data from Additional file 5)
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on spatially-ecological factors as well as community
state at the moment of phage invasion.

Additional files

Additional file 1: Data processing script addZeros.sce. A Scilab
script for data preprocessing of popSize.txt files that is necessary for
some other scripts (such as speciation_rate.sce). (SCE 2.71 kb)

Additional file 2: Data processing script speciation_rate.sce. A
Scilab script that calculates Speciation Rate Index (SRI). (SCE 13.7 kb)

Additional file 3: Data processing script averageSRandBiomass.sce.
A Scilab script that calculates averaged by time species richness (number
of species) and total biomass of the community. (SCE 9.20 kb)

Additional file 4: SRI.SR.Biomass.chemoff.xlsx. An Excel spreadsheet
containing the data on species richness, SRI and biomass for the chemotaxis-
off cases. (XLSX 38.9 kb)

Additional file 5: SRI.SR.Biomass.chemon.xlsx. An Excel spreadsheet
containing the data on species richness, SRI and biomass for the
chemotaxis-on cases. (XLSX 36.5 kb)

Additional file 6: Phage.extinction.chemon.xlsx. An Excel spreadsheet
containing the data on the extinction of phage populations for the
chemotaxis-on cases. (XLSX 8.98 kb)
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