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Abstract

Background: Piglet birth weight variability, a trait also known as the within-litter homogeneity of birth weight,
reflects the sow’s prolificacy, because it is positively genetically correlated with preweaning mortality but negatively
correlated with the mean growth of piglets during sucking. In addition, the maternal additive genetic variance and
heritability has been found exist for this trait, thus, reduction in the variability of piglet birth weight to improve the
sow prolificacy is possible by selective breeding.

Results: We performed a genome wide association study (GWAS) in 82 sows with extreme standard deviation of
birth weights within the first parity to identify significant SNPs, and finally 266 genome-wide significant SNPs (p < 0.01)
were identified. These SNPs were mainly enriched on chromosome 7, 1, 13, 14, 15 and 18. We further scanned genes
of the top 50 SNPs with the lowest p values and found some genes involved in plasma glucose homeostasis (GLP1R)
and lipid metabolism as well as maternal-fetal lipid transport (AACS, APOB, OSBPL10 and LRP1B) which may contribute
to the birth weight variability trait.

Conclusions: Birth weight variability trait has a low heritability. It is not easy to get significant signal by GWAS using
small sample size. Herein, we identified some candidate chromosome regions especially chromosome 7 and suggested
five genes which may provide some information for the further study.
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Background
In the past decades, litter size at birth has been considered
as the most important index for evaluating sow productivity
and great genetic improvement has been successfully ob-
tained for this trait in most of commercial pig breeds [1–4].
However, the preweaning mortality is rather high; thus, a
more applicable index for evaluating sow productivity is the
total number of alive piglets at weaning produced by a sow
per year. Preweaning mortality is influenced by a number
of factors, and within-litter variation in birth weight (birth
weight variability) has been proved to be an essential factor
for piglet survival [5]. Several studies have reported that
birth weight variability was positively related to preweaning

mortality on the phenotypic scale [5–7]. Recently, several
studies have addressed the genetic effect on birth weight
variability within-litter. Damgaard et al. [8] analyzed 22,521
piglets born in 2,003 litters by 1,074 Swedish Yorkshire
sows and proved the genetic correlation of birth weight
variability with proportion of dead piglets and the mean
growth of piglets during suckling was 0.25 and −0.31,
respectively. Previous studies have also reported the
heritability of birth weight variability ranged from 0.08 to
0.12 [8, 9]. Based on the maternal genetic variance and
heritability of piglet birth weight variability trait [8], it is
possible to improve the genetic progress of this trait by
selective breeding. In addition, selection for sows’ capacity
to produce homogeneous litters may reduce the piglets’
mortality, improve the mean growth during sucking and
obtain more homogeneous litters at weaning, which makes
the pig farm “all-in-all-out” strategy possible to get more
economic benefits.
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The standard deviation of birth weights within one litter
can be used to describe the birth weight variability. So far,
the genetic architecture of birth weight variability within-
litter is still unknown. Genome wide association study
(GWAS) using high-density SNP chip such as the Illumina
porcine 60K SNP chip has been proved as an efficient tool
to identify and map candidate genes for quantitative traits
in pigs [10-12]. In this study, we collected 3,305 piglet’s
birth weight records from 335 Suzhong sows’ first parities
and assigned the sample standard deviation of birth weights
within-litter as a phenotypic trait of the sow. Then we
performed a GWAS in 82 sows (39 with low variability and
43 with high variability) by using the Illumina porcine 60K
SNP chip to identify significant SNPs associated with the
birth weight variability at a genome level, then identified
the major candidate genes associated with this trait. The
filtered SNP loci may be used as a preliminary foundation
for further selective breeding.

Results and discussion
Genome-wide significant SNPs from the association studies
Totally, 53,693 SNPs with genotypes in 82 individuals
were used for association analyses after data filtering.
The number of genome-wide significant SNPs were
1916 and 266 at α level 0.05 and 0.01, respectively. For
the 266 significant SNPs, 17 SNPs have not been
mapped to any chromosome, and the other 249 SNPs
were mainly enriched on chromosome 1, 7, 13, 14, 15
and 18 (Fig. 1). We further scanned genes of the 249
SNPs located in, and found 71 SNPs were located within
60 annotated genes, 139 SNPs in region of 0.5 Mb away
from the nearest genes and no genes had been found in
region of 1 Mb for the rest of 39 SNPs (Fig. 2). The

detailed information for the top 50 SNPs with the lowest
p values is illustrated in Table 1.

Genes associated with glucose and lipid metabolism and
transport
Pregnancy is a critical period for both the mother and the
fetus, and the maternal factors can affect fetal growth and
pregnancy outcomes. In order to sustain appropriate fetal
development, the mother must provide nutrients such as
glucose, amino acids and lipids to the fetus across the
placenta [13]. And therefore, genes affecting the maternal
nutrient ingestion, energy metabolism and maternal-fetal
nutrient transport may affect the placental development as
well as fetal growth and finally result in the neonatal birth
weight variation. In this study, we only focused on the 50
most significant SNPs listed in Table 2 for candidate genes
scanning. Among the 50 SNPs, 17 SNPs were located
within annotated genes. Particularly worth mentioning is
that, 19 SNPs were mapped on SSC7 spanning from
37.4 Mb to 39.6 Mb. In this region, we explored 27 anno-
tated genes including one gene GLP1R (p = 0.0018) in regu-
lating plasma glucose levels. From the 50 SNPs we also
explored several genes involved in lipid metabolism such as
AACS on SSC14 (p = 0.0018), and lipid transport related
proteins including APOB on SSC3 (p = 0.0016), OSBPL10
on SSC13 (p = 0.0013), and LRP1B on SSC15 (p = 0.0014).
Glucose is the primary energy substrate essential for the

fetal growth and development. However, fetus generates
minimal glucose by itself, and most of the glucose is trans-
ported from maternal circulation through the glucose
transporters [14]. During the transport, the maternal glu-
cose should be taken up by placenta firstly, then entries into
the fetal circulation across two layers of cells [15–18]. The

Fig. 1 Manhattan-Plot for association of SNP loci with birth weight variability. The X axis indicates in different colors from left to right, SNP
locations from chromosomes 1–18 (chromosome location for unmapped SNPs was represented by 0), using Sus scrofa genome build10.2. The
Y axis represents the minus log of the P-value for each SNP
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GLP1R gene encodes glucagon-like peptide 1 (GLP1)
receptor, which specifically binds with GLP1 to mediate its
biological actions [19–21]. In mammals, stimulation of the
GLP1R in the pancreatic β cells results in a rise of insulin
secretion and lowers plasma glucose levels [22, 23]. The
maternal plasma glucose levels dramatically affect the fetal
growth, because glucose is the nutrient that crosses the pla-
centa in the greatest quantities by facilitated diffusion along
a concentration gradient [24]. A number of studies have
demonstrated that abnormal maternal plasma glucose level
such as hyperglycemia (hypoglycemia) is associated with
fetal overgrowth (restriction) during pregnancy [25–30].
Except for glucose, lipids such as triglycerides (TGs) and

cholesterol serve many critical roles in fetal growth [31].
The AACS gene encodes acetoacetyl-CoA synthetase,
which is an acetoacetate-specific ligase [32]. Acetoacetate is
the ketone body substrate for lipid biosynthesis which can
be converted into acetoacetyl-CoA by AACS then subse-
quently used for the synthesis of cholesterol or fatty acid.
Knock down of AACS in mouse significantly reduced the
total blood cholesterol [33], which suggested AACS may
play an important role in plasma cholesterol homeostasis.
Cholesterol is a kind of lipids that plays important

roles in fetal development, as it is an essential compo-
nent of cell membranes, a precursor for steroid hor-
mones and is also essential for activation of various
signaling pathways [34, 35]. Although most of the fetus’s
cholesterol is synthesized by the fetus itself, more and
more evidence suggested that during the first weeks of
life, the fetus largely depends on maternal cholesterol as
its cholesterol source [36]. The maternal cholesterol is
initially taken up by the placenta, and then transported
to the fetus by the cholesterol-carrying lipoproteins
[37, 38]. The apolipoprotein B (apoB)-containing lipo-
proteins is an efficient system for delivery of lipids
because these lipoproteins contain large amounts of
cholesterol, TGs and essential lipids [39]. ApoB
(encoded by the APOB gene) is the principal protein

component of plasma very low density lipoproteins
(VLDL) and low density lipoproteins (LDL), and several
genome-wide association studies in pig populations have
revealed the APOB gene was associated with the serum
total cholesterol (TC) and LDL cholesterol (LDL-C) levels
[40–42]. ApoB is also an essential component for the as-
sembly and secretion of competent apoB-containing lipo-
proteins [43, 44]. Human and rat placenta can synthesize
and secrete apoB [45–47], and a sharp increase in rat pla-
cental apoB mRNA during the last 48 h of pregnancy has
been reported by Demmer et al. [48]. Mouse yolk sac also
secretes apoB, and embryos lacking apoB can not export
lipoproteins from yolk sac endoderm cells and die with
severe neuro-developmental abnormalities during mid-
gestation [49, 50]. All these studies suggest a specific role
for the APOB gene in maternal-fetal lipid transport.
In mammals, oxysterols are oxygenated forms of

cholesterol. Oxysterol-binding protein (OSBP) and its
homologs OSBP-related (ORP) or OSBP-like (OSBPL)
proteins constitute a conserved family of lipid binding/
transfer proteins (LTP), which can accommodate choles-
terol, oxysterols and other steroids. The OSBPL10 (also
known as ORP10) is a member of the LTP family and
has the capacity to bind cholesterol and several acidic
phospholipids [51]. Association studies revealed poly-
morphisms in the OSBPL10 gene displayed linkage and
association with the extreme upper end serum triacyl-
glycerol (TAG) and LDL-C levels in dyslipidaemic sub-
jects [52, 53]. Functional studies have also demonstrated
the OSBPL10 gene negatively regulates hepatocellular
VLDL biosynthesis and suppresses apoB-containing lipo-
proteins secretion [51].
Finally, LRP1B gene encodes LDL receptor-related

protein 1B and mediates cellular cholesterol uptake [54].
Dietrich et al. [55] reported that knockout of Lrp1b in
mice results in early embryonic lethality. Association
analysis identified LRP1B as a determinant of rat choles-
terol concentrations in LDL, and a significant association
with child body mass index (BMI) in human [56, 57]. Fur-
thermore, recent studies suggested the LRP1B gene was
also involved in glucose homeostasis. Polymorphism of
this gene was associated with insulin resistance and in
normoglycemic women the maternal glucose levels were
associated with DNA methylation changes at LRP1B gene
loci in the placenta and cord blood [57, 58]. We summa-
rized the above five candidate genes (GLP1R, AACS,
APOB, OSBPL10 and LRP1B) involved in glucose and lipid
homeostasis as well as maternal-fetal lipid transport path-
ways in Fig. 3.

Expression of candidate genes in porcine placenta and
endometrium tissues
Genes expressed in placenta or endometrium may play
functional roles for fetal development, and the public

Fig. 2 The genomic distribution of the 249 significant SNPs (p < 0.05)
associated with piglet birth weight variability

Wang et al. BMC Genetics 2016, 17(Suppl 1):15 Page 43 of 48



Table 1 The annotated genes between 500 kb downstream and 500 kb upstream of the 50 SNPs with the lowest p value from
the GWAS

No SNP name Pig chromosome Position (Mb) P value Adjacent genesa (±0.5 Mb) Distanceb (bp)

1 ALGA0007307 1 206.50 0.0003 PELI2, TMEM260, OTX2, EXOC5 within

2 DRGA0004275 3 129.20 0.0004 FAM49A within

3 ALGA0083116 14 149.00 0.0006 FOXI2, NPS, PTPRE, MKI67 within

4 ALGA0083057 14 147.76 0.0006 FAM196A 488070

5 ASGA0040051 8 139.04 0.0006 MMRN1, SNCA, GPRIN3 293849

6 MARC0115245 13 188.57 0.0007 NAc

7 ASGA0061743 14 16.41 0.0008 GATA4,NEIL2,FDFT1, CTSB, DEFB134, ADAM29 −44520

8 DIAS0000130 7 39.09 0.0010 ZFAND3, BTBD9, GLO1, DNAH8 within

9 DRGA0013238 13 188.95 0.0010 LIPI 380204

10 DRGA0008884 8 139.01 0.0011 MMRN1,SNCA, GPRIN3 317059

11 H3GA0039777 14 37.65 0.0012 NOS1, FBXO21, TESC, FBXW8, RNFT2 within

12 ALGA0114335 8 17.21 0.0012 ADGRA3, GBA3 within

13 ALGA0040467 7 38.40 0.0012 CCDC167,MDGA1,ZFAND3 −227337

14 ALGA0040474 7 38.89 0.0012 CPNE5, PPIL1, PI16, MTCH1, FGD2, PIM1, TMEM217, TBC1D22B,
RNF8, ZFAND3, CCDC167, MDGA1

−142259

15 ASGA0083383 18 17.18 0.0012 CHCHD3 within

16 ALGA0097813 18 32.55 0.0013 TFEC −338821

17 H3GA0020922 7 38.06 0.0013 FGD2, PIM1, TMEM217, TBC1D22B, RNF8, CCDC167, MDGA1 −85741

18 ALGA0040434 7 38.08 0.0013 FGD2, PIM1, TMEM217, TBC1D22B, RNF8, CCDC167, MDGA1 −106358

19 ALGA0109619 13 20.09 0.0013 STT3B, OSBPL10, CMTM6, DYNC1LI1, CMTM7, CMTM8 within

20 MARC0090396 3 130.65 0.0014 ENSSSCG00000008620 within

21 H3GA0019379 7 37.84 0.0014 PPIL1, PI16, MTCH1, FGD2, PIM1, TMEM217, TBC1D22B,
RNF8, ZFAND3, CCDC167, MDGA1

−93575

22 ASGA0068602 15 12.98 0.0014 LRP1B −50827

23 ALGA0070915 13 81.34 0.0014 CHST13, ACPP, DNAJC13, ACAD11, UBA5 within

24 DRGA0015381 15 121.31 0.0015 IN080D,NDUFS1, EEF1B2, GPR1, ZDBF2, ADAM23, FASTKD2,
MDH1B, CPO

within

25 ASGA0016323 3 124.90 0.0016 APOB 326494

26 MARC0061348 7 38.21 0.0016 TMEM217, TBC1D22B, RNF8, CCDC167, MDGA1 −98887

27 DRGA0007508 7 38.82 0.0016 ZFAND3, BTBD9, GLO1, DNAH8 −73453

28 MARC0084509 4 5.59 0.0016 NA

29 ALGA0037853 7 0.43 0.0016 CCDC167, FOXQ1, FOXF2, GMDS, 20912

30 ASGA0037952 8 17.25 0.0016 ADGRA3 −312721

31 ALGA0087652 15 140.88 0.0017 NYAP2 −349642

32 ALGA0040570 7 39.63 0.0018 GLO1,DNAH8,GLP1R, KCNK5,KCNK17,KIF6 within

33 ASGA0062412 14 29.48 0.0018 TMEM132B, AACS, BRI3BP, DHX37 within

34 ASGA0032735 7 38.46 0.0018 CCDC167, MDGA1, ZFAND3 −316254

35 ALGA0040468 7 38.54 0.0018 CCDC167, MDGA1, ZFAND3 202512

36 ASGA0027748 6 18.83 0.0019 CNOT1, GOT2 −323698

37 ALGA0012631 2 25.98 0.0020 NA

38 MARC0008120 7 37.81 0.0020 CPNE5,PPIL1,PI16,MTCH1,PTGDS, PIM1, TMEM217, TBC1D22B,
RNF8, CCDC167, MDGA1

−69290

39 DRGA0002077 1 254.15 0.0022 RORB 461748

40 BGIS0006392 1 244.49 0.0022 KCNV2 473499

41 ALGA0083738 15 0.26 0.0023 NMI −227794
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RNA-seq data give us a good opportunity to check gene
expression in specific tissues. We checked the above five
candidate genes (GLP1R, AACS, APOB, OSBPL10 and
LRP1B) in porcine placenta and endometrium tissues by
using the public RNA-seq data or microarray data, and
the results were summarized in Table 2. We found the
AACS and OSBPL10 gene had relatively high expres-
sion both in porcine placenta and endometrium at dif-
ferent gestational stages (day 25, 45, 65, 85, 105 and
113) [59–62]. However, the other two genes GLP1R
and LRP1B had no expression in these two tissues from
the above data. The APOB gene had very low expression
in porcine endometrium during early (gestational day 15)
and mid-gestation (gestational days 26 and 50) [60, 62].
Based on the Yorkshire endometrium RNA-seq deep se-
quencing results (Size = 10Gb, unpublished data from our
group), the AACS gene was highly expressed in the endo-
metrium during early embryo implantation (RPKM> 250)
and the expression of APOB gene was sharply increased at
gestational day 15 (RPKM= 16.72) compared with day 12
(RPKM= 1.60).

Interestingly, we found half of the 27 genes on SSC7
listed in Table 1 expressed in porcine placenta (gestational
day 113) and endometrium (gestational day 25) including
four extremely high expression genes (ZFAND3, FOXQ1,
GMDS and MTCH1) [50, 51]. ZFAND3 gene encodes
Zing finger AN1-type domain 3 protein which is originally
isolated from the mouse testis [63] and expression assay
suggested this gene is involved in spermatogenesis [64].
Recently, association studies identified ZFAND3 as a sus-
ceptible gene to type 2 diabetes in several human popula-
tions [65, 66], which suggested this gene may be involved
in plasma glucose homeostasis. The high expression of
ZFAND3 gene in porcine placenta and endometrium
possibly imply its functional role for embryo (or fetus)
development.

Conclusions
Birth weight variability is an economic trait with low
heritability. In this study, we performed a GWAS in 82
sows with extreme phenotypic records and identified
266 significant associated SNPs (p < 0.01). For the top 50

Table 2 The expression of five candidate genes in porcine placenta and endometrium analyzed by using public microarray and
RNA-seq data

Gene name Placenta Endometrium

AACS Microarray, +, Meishan and white composite [59]; Microarray, +, Meishan and Yorkshire [60];

RNA-seq, RPKM = 11.78, Duroc and wild boar [61] RNA-seq, RPKM = 11.92 [62]

OSBPL10 Microarray, +, Meishan and white composite [59]; Microarray, +, Meishan and Yorkshire [60];

RNA-seq, RPKM = 9.42, Duroc and wild boar [61] RNA-seq, RPKM = 8.94 [62]

APOB Microarray, +, Meishan and white composite [59]; Microarray, +, Meishan and Yorkshire [60];

RNA-seq, RPKM = 2.04 [62]

LRP1B RNA-seq, RPKM = 0.12 [62]

GLP1R RNA-seq, RPKM = 0.11 [62]

Table 1 The annotated genes between 500 kb downstream and 500 kb upstream of the 50 SNPs with the lowest p value from
the GWAS (Continued)

42 ASGA0032683 7 37.95 0.0023 PPIL1,PI16,MTCH1,PTGDS,PIM1, TMEM217, TBC1D22B, RNF8,
CCDC167, MDGA1

−45021

43 ALGA0040427 7 37.97 0.0023 PPIL1,PI16,MTCH1,PTGDS,PIM1, TMEM217, TBC1D22B, RNF8,
CCDC167,MDGA1

−62182

44 DIAS0003266 13 38.47 0.0024 GNL3,GLT8D1, SPCS1, NEK4, ITIH3, ITIH4, SFMBT1, PRKCD, TKT,
DCP1A

within

45 ALGA0106090 15 2.84 0.0024 LYPD6B, KIF5C within

46 ASGA0038720 8 40.37 0.0026 SLAIN2, SLC10A4, ZAR1 39595

47 SIRI0000172 14 87.58 0.0026 NA

48 ALGA0076580 14 29.46 0.0027 TMEM132B, AACS, BRI3BP, DHX37 within

49 ALGA0049776 8 138.91 0.0027 MMRN1,SNCA, GPRIN3 −275407

50 ASGA0032655 7 37.40 0.0028 PNPLA1,ETV7,STK38,SRSF3,RAB44,CPNE5, PPIL1,PI16,MTCH1,
PTGDS,PIM1, TMEM217,TBC1D22B, RNF8

within

agene with black bold is the nearest gene from the SNP. bPositive value denotes the gene located downstream of the SNP, negative value denotes the gene
located upstream of the SNP. cno gene has been identified in this region
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significant SNPs, we further scanned the genes within
1 Mb region and finally suggested candidate genes in-
volved in plasma glucose homeostasis (GLP1R) and lipid
metabolism as well as maternal-fetal lipid transport
(AACS, APOB, OSBPL10 and LRP1B) which may con-
tribute to the current trait we focused on. But, further
association analysis in bigger sample size and function
studies need be carried out to confirm our present
conclusion.

Methods
Pig population and phenotype measurement
The pigs we studied were coming from Suzhong pig
seed farm of Jiangsu Academy of Agricultural Institute.
We collected the reproductive information from 335
sows, including the total number born (TNB), number
born alive (NBA) and the birth weight (BW) records
from total of 3,305 first parity’s piglets. Because the farm
only had the birth weight of born alive offspring’s
records, in this case the sample standard deviation (SD)
of born alive birth weights within one litter was de-
scribed as a phenotype to assess the piglet birth weight
variability for each sow.

Genotyping and quality control
A total of 82 sows with extreme SD were genotyped for
further association studying, and they were divided into
low (group 1, n = 39) and high (group 2, n = 43) SD
groups, with the mean SD 0.08 (from 0.04 to 0.12) and
0.21 (from 0.12 to 0.48), respectively. The TNB, NBA
and SD information of these sows is summarized in
Additional file 1. It is worth mentioning that the TNB is
more than four for all the 82 studied sows in order to
reduce the effect of litter size. 5 ml blood samples were
collected from each sow for genomic DNA isolation
using a standard phenol/chloroform method. All DNA
samples were qualified with a ratio of A260/280 between
1.80 and 2.0 and standardized into a final concentra-
tion of 200 ng/μL. Then, 2 μg DNA sample from
each of these sows were genotyped using the Porcine
SNP60 Beadchips (Illumina, USA) following the man-
ufacturer’s protocol. Quality control was carried out

using PLINK (version 1.07) [67] and executed SNPs
with call rate < 80 %, Gentrain score < 40 %, minor allele
frequency (MAF) < 0.01, and severely departed from hardy
weinberg equilibrium (HWE) (P-value < 0.0001).

Genome-wide association analyses
In this study, compressed mixed linear model (CMLM)
from the Genome Association and Prediction Integrated
Tool (GAPIT) program package [68] was used for whole
genome association analyses. The CMLM statistical
model we used was described as following:
y = Xα + Pβ + Kμ + e. Where y is the vector of

phenotype, X is a matrix of SNP genotypes, p is a
matrix of PC (principle components) for population
structure, K is a kinship matrix. Xα and Pβ are
regarded as fixed effects, where Pβ is used as a covar-
iate to address the spurious associations that arise
from population structure, and Kμ and e are regarded
as random effects.

Gene search and functional annotation
Gene searches were carried out in 0.5 Mb sequence
upstream and downstream of the significant associated
SNPs with the top 50 lowest p value using the Sus
scrofa 10.3 genome build. If no genes were identified
in the gene-poor regions, then the genes upstream and
downstream of the region were considered to pos-
sibly represent the locus. Functional annotation clus-
tering was performed for all the identified genes
using DAVID software (http://david.abcc.ncifcrf.gov),
and the gene enrichment clusters related to repro-
ductive functions and reproductive tissues were taken
into consideration.

Additional file

Additional file 1: Phenotype records of the 82 sows used for GWAS.
(XLS 2366 kb)

Abbreviations
GWAS: genome wide association study; SD: standard deviation; SNPs: single
nucleotide polymorphisms; MAF: minor allele frequency; HWE: hardy
weinberg equilibrium; Mb: mega base; SSC: sus scrofa chromosome;

Fig. 3 Summary of the five candidate genes involved in glucose and lipid homeostasis as well as maternal-fetal lipid transport pathways
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CMLM: compressed mixed linear model; GAPIT: Genome Association and
Prediction Integrated Tool; DAVID: The Database for Annotation, Visualization
and Integrated Discovery; TGs: triglycerides; VLDL: very low density
lipoproteins; LDL: low density lipoproteins; TC: total cholesterol; LDL-C: low
density lipoprotein cholesterol; TAG: triacylglycerol; GLP1R: glucagon-like
peptide 1 receptor; AACS: acetoacetyl-CoA synthetase; APOB: apolipoprotein
B; OSBPL10: Oxysterol-binding protein like 10; LRP1B: LDL receptor-related
protein 1B; BMI: body mass index; RPKM: Reads Per Kilobase of exon model
per Million mapped reads; TNB: total number born; NBA: number born alive;
BW: birth weight.
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