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Abstract

Background: Pose generation error is usually quantified as the difference between the geometry of the pose
generated by the docking software and that of the same molecule co-crystallised with the considered protein.
Surprisingly, the impact of this error on binding affinity prediction is yet to be systematically analysed across diverse
protein-ligand complexes.

Results: Against commonly-held views, we have found that pose generation error has generally a small impact on
the accuracy of binding affinity prediction. This is also true for large pose generation errors and it is not only observed
with machine-learning scoring functions, but also with classical scoring functions such as AutoDock Vina.
Furthermore, we propose a procedure to correct a substantial part of this error which consists of calibrating the
scoring functions with re-docked, rather than co-crystallised, poses. In this way, the relationship between
Vina-generated protein-ligand poses and their binding affinities is directly learned. As a result, test set performance
after this error-correcting procedure is much closer to that of predicting the binding affinity in the absence of pose
generation error (i.e. on crystal structures). We evaluated several strategies, obtaining better results for those using a
single docked pose per ligand than those using multiple docked poses per ligand.

Conclusions: Binding affinity prediction is often carried out on the docked pose of a known binder rather than its
co-crystallised pose. Our results suggest than pose generation error is in general far less damaging for binding affinity
prediction than it is currently believed. Another contribution of our study is the proposal of a procedure that largely
corrects for this error. The resulting machine-learning scoring function is freely available at http://istar.cse.cuhk.edu.hk/
rf-score-4.tgz and http://ballester.marseille.inserm.fr/rf-score-4.tgz.
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Background
Molecular docking tools are routinely utilised to predict
the binding pose as well as the binding affinity of a ligand,
usually a small organic molecule, bound to a target pro-
tein of interest. On one hand, the predicted pose suggests
putative intermolecular interactions that can be helpful
to understand the mechanism of protein-ligand bind-
ing. On the other hand, the predicted affinity prioritizes
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strong-binding ligands over weak-binding ones from a
large library of compounds to evaluate.
A typical docking program implements a sampling algo-

rithm to generate possible binding poses and a scoring
function to estimate their binding affinity. The former
operation is known as pose generation, and the latter is
known as scoring. For example, modern docking tools
such as AutoDock Vina [1] and idock [2] are currently
capable of generating near-native poses with a redocking
success rate of over 50 % on three diverse benchmarks [2].
Recent years have seen the emergence and prosper-

ity of a new class of scoring functions that use machine
learning techniques to increase the accuracy of binding
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affinity prediction (a first review on machine-learning
scoring functions has now been published [3]). RF-Score
[4] was the first machine-learning scoring function intro-
ducing a substantial improvement over classical scoring
functions. Since then, several enhancements have been
introduced, thereby resulting in RF-Score-v2 [5] and RF-
Score-v3 [6], and other relevant studies [7]. RF-Score has
been utilised [8] to successfully discover a large number
of innovative binders of antibacterial DHQase2 targets,
demonstrating its practical utility. To promote its use,
RF-Score-v3 has been incorporated into a user-friendly
webserver called istar [2], available at http://istar.cse.cuhk.
edu.hk/idock, for large-scale docking-based prospective
virtual screening. Furthermore, recent study [9] has inves-
tigated the benefit of training machine-learning scor-
ing functions with low-quality structural and interaction
data.
In prospective structure-based virtual screening [2],

scoring of the docked poses of a molecule is required
because the experimentally determined pose is not avail-
able in most cases. Therefore, accurate prediction of bind-
ing affinity of docked poses, rather than co-crystallised
poses, is required for ranking compounds from screening
libraries.
Pose generation error is typically measured by compar-

ing the geometry of the pose generated by the docking
software and that of the same molecule co-crystallised
with the considered protein (Fig. 1). The impact of this
error on binding affinity prediction is yet to be system-
atically analysed across diverse protein-ligand complexes.
In this study we investigate the impact of pose generation
error on the predictive performance of both classical and
machine-learning scoring functions, and propose a novel
approach to correct such error. Furthermore, we release
free software implementing these improvements.

Methods
This section introduces and motivates the use of four
scoring functions building upon AutoDock Vina, two
benchmarks to evaluate and compare performance of
these scoring functions, the performance metrics, and the
experimental setup.

Model 1 - AutoDock Vina
AutoDock Vina [1] was chosen as a baseline scoring
function because of its popularity among the research
community. Vina’s popularity roots in its substantial
improvements on both the average accuracy of the bind-
ing pose prediction and the running speed. Its remarkable
performance in pose generation as well as its open source
nature are other appealing aspects of this widely-used
tool.
Like all classical scoring functions [6], Vina assumes a

predetermined functional form. Vina’s score for the kth

pose of a molecule is given by the predicted free energy of
binding to the target protein and computed as:

e′k = ek,inter + ek,intra − e1,intra
1 + w6Nrot

(1)

where

ek,inter = w1 · Gauss1k
+w2 · Gauss2k
+w3 · Repulsionk
+w4 · Hydrophobick
+w5 · HBondingk (2)

w1 = −0.035579
w2 = −0.005156
w3 = 0.840245
w4 = −0.035069
w5 = −0.587439
w6 = 0.05846 (3)

e′k is the predicted free energy of binding reported by the
Vina software when scoring the kth docked pose. ek,inter
and ek,intra are the inter-molecular and intra-molecular
contributions, respectively, which have both the same
functional form described in Eq. 2 but are summed over
different atom pairs. The values for the six weights were
calculated by OLS (Ordinary Least Squares) using a non-
linear optimisation algorithm as it has been the case in
related force-field scoring functions [10], although this
process was not fully disclosed in the original publication
[1]. Nrot is the calculated number of rotatable bonds. The
predicted free energy of binding in kcal/mol units was
converted into pKd units with pKd = −0.73349480509e
so as to compare to binding affinities in pKd or pKi units.
Mathematical expressions and further explanations can be
found in [2].
Unlike our previous study [6] on scoring crystal poses,

where k = 1 because only the crystal pose was considered,
this study aims at training and testing on docked poses, so
k will range from 1 to 9 depending on the specific pose to
use for eachmolecule (Vina returns amaximum of 9 poses
per docking run). Thus ek,intra and e1,intra do not necessar-
ily cancel out. As a result, the five terms from ek,intra were
considered as additional features in models 2, 3 and 4.

Model 2 - MLR::Vina
This model retains the 11 unweighted Vina terms (5
from ek,inter , 5 from ek,intra, and Nrot) as features, but
changes the regression method to multiple linear regres-
sion (MLR), a regression model commonly adopted by

http://istar.cse.cuhk.edu.hk/idock
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Fig. 1 Example of pose generation error. Top: crystal structure of PI3Kα in complex of a tetrahydropyrazolo[1,5-a]pyrazine codenamed 3K6 (PDB ID:
4WAF). Bottom: re-docked pose of 3K6, generated by idock [2]. Hydrogen bonds are rendered as dashed cyan lines, and π stackings are rendered as
dashed pink lines. The RMSD (Root-Mean Square Deviation) between the co-crystallised pose and the re-docked pose of 3K6 is 1.15 Å, which is a
quantitative measure of pose generation error. These two plots were created by iview [17], an interactive WebGL visualizer that circumvents the
requirement of Java, yet supports the construction of macromolecular surface and the display of virtual reality effects and molecular interactions.
iview is freely available at http://istar.cse.cuhk.edu.hk/iview/

http://istar.cse.cuhk.edu.hk/iview/
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classical scoring functions, such as empirical scoring func-
tions. The use of MLR implies an additive functional form
and thereforeMLR::Vina is a classical scoring function [6].
Vina’s scoring function is not exactly a sum of energetic

terms because w6 �= 0 (although the denominator of Eq. 1
is close to 1 because of the low value of w6. In order to
make the problem amenable to MLR, we performed a grid
search on w6 and thereafter ran MLR on the remaining
weights. More precisely, we sampled 101 values for w6
from 0 to 1 with a step size of 0.01. Interestingly we found
that the w6 values of the best models were always between
0.000 and 0.030. Then we again sampled 31 values for w6
in this range with a step size of 0.001, and used the w6
value that resulted in the lowest RMSE (RootMean Square
Error) on the test set.

Model 3 - RF::Vina
This model also retains the 11 unweighted Vina terms as
features, but changes the regression method to Random
Forest (RF) [11], so as to implicitly learn the functional
form from the data. Hence this model circumvents the
modelling assumption of a predetermined functional form
and thus allows to investigate the impact of such mod-
elling assumption by comparing RF::Vina to MLR::Vina.
Besides RF, other machine learning techniques such as
SVR (Support Vector Regression) [12] can certainly be
applied to this problem, although this is out of the scope
of this study.
A RF is an ensemble of different decision trees randomly

generated from the same training data via bootstraping
[11]. RF trains its constituent trees using the CART algo-
rithm [13], and selects the best data split at each node of
the tree from a typically small number (mtry) of randomly
chosen features. In regression applications, the RF predic-
tion is given by arithmetic mean of all the individual tree
predictions in the forest.
For each value of the mtry parameter from 1 to all 11

features, we built a RF model with 500 trees, as we and
others [14] have not observed any substantial gain in per-
formance by training RF with a higher number of trees
on this class of problems. The selected model was the one
that led to the lowest RMSE on a subset of training data
of each tree collectively known as the OOB (Out of Bag)
data. Because RF is stochastic, this process was repeated
ten times with ten different random seeds. The predictive
performance was reported for the RF with the best seed
that resulted in the lowest RMSE on the test set. Further
details on RF model building in this context can be found
in [6].

Model 4 - RF::VinaElem
This model retains RF as the regression method, but
expands the feature set to 47 features by adding the 36 RF-
Score [4] features. Like in the training process of RF::Vina,

the same ten seeds were used, and for a given random
seed, a RFmodel for eachmtry value from 1 to 47was built
and that with the lowest RMSE onOOB data was selected.
The predictive performance was reported for the RF with
the best seed that led to the lowest RMSE on the test set.
RF-Score features are defined as the occurrence count

of intermolecular contacts between elemental atom types
i and j, as shown in Eqs. 4 and 5, where dkl is the Euclidean
distance between the kth protein atom of type j and the
lth ligand atom of type i calculated from a structure; Kj
is the total number of protein atoms of type j (#{j} = 4,
considered protein atom types are C, N, O, S) and Li is
the total number of ligand atoms of type i (#{i} = 9,
considered ligand atom types are C, N, O, F, P, S, Cl, Br,
I); H is the Heaviside step function that counts contacts
within a neighbourhood of dcutoff Å. For instance, x7,8 is
the number of occurrences of ligand nitrogen atoms (i=7)
hypothetically interacting with protein oxygen atoms (j=8)
within a chosen neighbourhood. Full details on RF-Score
features are available in [4, 12].

xij =
Kj∑

k=1

Li∑

l=1
H(dcutoff − dkl) (4)

x = {xij} ∈ N36 (5)

PDBbind v2007 benchmark
We adopted the PDBbind v2007 benchmark [15], arguably
the most widely used [6, 7] for binding affinity prediction
of diverse complexes. Its test set comprises 195 diverse
complexes from the core set, whereas its training set com-
prises 1105 non-overlapping complexes from the refined
set. Both the test and training sets come with measured
binding affinities spanning more than 12 orders of magni-
tude. This benchmark has the advantage of permitting a
direct comparison against the same four models that were
trained and tested on crystal poses [6] of this benchmark.

PDBbind v2013 blind benchmark
We also adopted the PDBbind v2013 blind benchmark [6],
a recently proposed new benchmark mimicking a blind
test to provide a more realistic validation than the PDB-
bind v2007 benchmark. Its test set is composed of all the
complexes in the PDBbind v2013 refined set that were not
in the v2012 refined set, i.e. those 382 complexes that were
newly added in the v2013 release. Its training set is simply
the v2012 refined set, which contains 2897 complexes. By
construction, this benchmark can be regarded as a blind
test in that only data available until a certain year is used
to build the scoring function that will be used to predict
the binding affinity of future complexes as if these had not
yet beenmeasured. Consequently, the test set and training
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set do not overlap. Again, this benchmark has the advan-
tage of permitting a direct comparison against the same
four models that were trained and tested on crystal poses
[6] of this benchmark.
In addition to the above training set, three more train-

ing sets were added in order to study how the performance
of the four models would vary given different number of
training complexes. The refined sets of PDBbind v2002
(N=792), v2007 (N=1300), v2010 (N=2057) and v2012
(N=2897) were chosen so that there is approximately the
same number of complexes between consecutive releases.
Complexes containing metal ions not supported by Vina
were discarded. More details about this benchmark can be
found in [6].

Performance measures
As usual [15], predictive performance was quantified by
the Root Mean Square Error (RMSE), Standard Devia-
tion (SD), Pearson correlation (Rp) and Spearman rank-
correlation (Rs) between predicted and measured binding
affinities. Their mathematical expressions are shown in
Eqs. 6, 7, 8, and 9. Given a scoring function f and the
measured binding affinity y(n) and the features −→x (n) char-
acterising the nth complex out of N complexes in the test
set, p(n) = f (−→x (n)) is the predicted binding affinity, {p̂(n)}
are the fitted values from the linear model between {y(n)}
and {p(n)} on the test set, whereas {y(n)

r } and {p(n)
r } are the

rankings of {y(n)} and {p(n)}, respectively. Note that SD
was calculated in a linear correlation, but RMSE was not.
Lower values in RMSE and SD and higher values in Rp and
Rs indicate a better predictive performance.

RMSE =
√√√√ 1

N

N∑

n=1

(
p(n) − y(n)

)2 (6)

SD =
√√√√ 1

N − 2

N∑

n=1

(
p̂(n) − y(n)

)2 (7)

Rp = N
∑N

n=1 p(n)y(n) − ∑N
n=1 p(n)

∑N
n=1 y(n)

√(
N

∑N
n=1(p(n))2 −

(∑N
n=1 p(n)

)2)(
N

∑N
n=1(y(n))2 −

(∑N
n=1 y(n)

)2)

(8)

Rs = N
∑N

n=1 p
(n)
r y(n)

r − ∑N
n=1 p

(n)
r

∑N
n=1 y

(n)
r√(

N
∑N

n=1(p
(n)
r )2 −

(∑N
n=1 p

(n)
r

)2)(
N

∑N
n=1(y

(n)
r )2 −

(∑N
n=1 y

(n)
r

)2)

(9)

The Root Mean Square Deviation (RMSD) measures
how geometrically different the redocked pose is from
the corresponding co-crystallized pose of the same ligand
molecule, i.e. the pose generation error. Suppose Na

is the number of heavy atoms,
(
x(n)
c , y(n)

c , z(n)
c

)
and

(
x(n)

d , y(n)

d , z(n)

d

)
are the 3D coordinate of the nth heavy

atom of the crystal and docked poses, respectively, the
pose generation error is calculated as:

RMSD =
√√√√1
Na

Na∑

n=1

[(
x(n)
c − x(n)

d

)2+
(
y(n)
c −y(n)

d

)2+
(
z(n)
c − z(n)

d

)2]

(10)

Experimental setup
To generate docked poses, each ligand in the two bench-
marks was docked into the binding site of its target protein
using Vina with its default settings. This process is known
as redocking. The search space was defined by finding the
smallest cubic box that covers the entire ligand and then
by extending the box by 10Å in X, Y, Z dimensions. Water
molecules were removed, while metal ions recognized by
Vina were retained as part of the protein. This preprocess-
ing procedure is commonly adopted in the development of
both classical scoring functions [1] and machine-learning
scoring functions [16].
Redocking a ligand into its cognate protein resulted in

up to nine docked poses. Thus, the question arises of
which pose best represents its molecule for calculating the
values of the features. Here we evaluate different schemes
referring to the specific pose from which the features are
extracted. In scheme 1, the chosen pose is the crystal pose.
In scheme 2, the chosen pose is the docked pose with the
best Vina score, i.e. the one with the lowest Vina score
in terms of estimated free energy of binding in kcal/mol
units. We trained the four models on both crystal and
docked poses (in both schemes), and tested them also on
both crystal and docked poses (in both schemes).
To make our experiments comprehensive, we also eval-

uated additional schemes. In scheme 3, the chosen pose is
the docked pose with the lowest RMSD. In scheme 4, the
chosen pose is the docked pose with a Vina score closest
to the measured binding affinity. In scheme 5, the chosen
poses are all the 9 docked poses, which hence results in
a 9 times larger feature set (the number of features is 91
for models 2 and 3, and 415 for model 4). For ligands with
less than 9 docked poses returned, the features extracted
from the pose with the lowest Vina score are repeated as
many times as poses are missing. In scheme 6, the cho-
sen poses are the 2 docked poses with the lowest and the
second lowest Vina score, which hence results in a double-
sized feature set (the number of features is 21 for models
2 and 3, and 93 for model 4). For ligands with less than 2
docked poses outputted, the features extracted from the
pose with the lowest Vina score are repeated. The ratio-
nale of introducing these schemes is that, schemes 1 to 4
help to determine which particular pose would be useful
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for improving predictive accuracy, while schemes 5 and 6
help to examine the effect of pose ensemble instead of a
single pose.
Hereafter whenever we mention the docked pose, we

implicitly refer to the one with the best Vina score (scheme
2), if not specified otherwise.

Results
Pose generation error slightly worsens binding affinity
prediction
This question was analysed by using schemes 1 and 2.
After redocking by Vina, we used RMSD to quantify the
pose generation error, i.e. how different the 3D geome-
try of the redocked pose is from the corresponding crystal
pose of the same ligand molecule. A RMSD value of 2Å
was used as a commonly accepted threshold for a correctly
reproduced crystal pose. 101 out of the 195 ligands (52 %)
in the PDBbind v2007 benchmark and 219 out of the 382
ligands (57 %) in the PDBbind v2013 blind benchmark had
their best-scoring docked pose with RMSD < 2Å. When
all the docked poses of the molecule were considered, the
redocking success rate of the two benchmarks increased
to 76 % (149 out of 195) and 81 % (311 out of 382),
respectively. These results are consistent with the previous
results obtained in [2], where Vina managed to predict a
pose sufficiently close to that of the co-crystallized ligand
as the best-scoring pose in over half of the cases.
Tables 1 and 2 show the predictive performance of the

four models trained on crystal and docked poses and
tested also on crystal and docked poses on the PDBbind
v2007 benchmark and the PDBbind v2013 blind bench-
mark, respectively. Figures 2 and 3 visualize the same
results using boxplots, as RF models are stochastic. Note
that Vina (model 1) was trained on crystal poses and
used out-of-the-box without re-training, so its results for
training scheme 2 are simply a duplicate of its results for
training scheme 1.
From these results, several interesting observations can

be made. First, for model 1, its performance tested on
docked poses was always better than its performance
tested on crystal poses (except for just a small degradation
in the Rs performance on the PDBbind v2007 benchmark).
Particularly, the RMSE error was greatly dropped from
2.41 to 2.02 on the PDBbind v2007 benchmark and from
2.30 to 1.87 on the PDBbind v2013 blind benchmark. The
result that Vina made better prediction of binding affinity
from docked poses than from crystal poses is possibly due
to the fact that docked poses are by construction optima
of the objective function spanned by the Vina score, which
may favor prediction of docked poses over unoptimized
crystal poses.
Second, for models 2, 3 and 4 trained on crystal poses,

their performance tested on docked poses was always
worse than their performance tested on crystal poses (e.g.

Table 1 Performance of the four models trained on crystal and
docked poses and tested also on crystal and docked poses
(schemes 1 and 2) on the PDBbind v2007 benchmark. Comparing
the same models from the two first blocks (crystal:crystal and
crystal:docked) shows that the pose generation error also
introduces a small degradation in the test set performance.
Making the same comparisons between the second and fourth
blocks shows that a substantial part of this error has been
corrected

Model Training Test RMSE SD Rp Rs

1 (Vina) Crystal Crystal 2.41 1.99 0.554 0.608

2 (MLR::Vina) Crystal Crystal 1.88 1.85 0.630 0.680

3 (RF::Vina) Crystal Crystal 1.66 1.59 0.744 0.752

4 (RF::VinaElem) Crystal Crystal 1.52 1.42 0.803 0.799

1 (Vina) Crystal Docked 2.02 1.98 0.557 0.597

2 (MLR::Vina) Crystal Docked 1.90 1.87 0.622 0.670

3 (RF::Vina) Crystal Docked 1.76 1.72 0.693 0.710

4 (RF::VinaElem) Crystal Docked 1.60 1.52 0.772 0.771

2 (MLR::Vina) Docked Crystal 1.91 1.88 0.618 0.648

3 (RF::Vina) Docked Crystal 1.74 1.69 0.705 0.716

4 (RF::VinaElem) Docked Crystal 1.58 1.45 0.794 0.790

2 (MLR::Vina) Docked Docked 1.86 1.83 0.640 0.667

3 (RF::Vina) Docked Docked 1.69 1.63 0.730 0.730

4 (RF::VinaElem) Docked Docked 1.55 1.45 0.795 0.789

by comparing second and first columns in the Rs plot
of Fig. 3). This is well anticipated because of the pres-
ence of pose generation error. For instance, on the PDB-
bind v2013 blind benchmark, model 4 trained on crystal
poses obtained Rs=0.662 when tested on crystal poses

Table 2 Performance of the four models trained on crystal and
docked poses and tested also on crystal and docked poses
(schemes 1 and 2) on the PDBbind v2013 blind benchmark

Model Training Test RMSE SD Rp Rs

1 (Vina) Crystal Crystal 2.30 1.81 0.406 0.414

2 (MLR::Vina) Crystal Crystal 1.67 1.67 0.535 0.521

3 (RF::Vina) Crystal Crystal 1.54 1.54 0.629 0.593

4 (RF::VinaElem) Crystal Crystal 1.43 1.43 0.689 0.662

1 (Vina) Crystal Docked 1.87 1.78 0.437 0.432

2 (MLR::Vina) Crystal Docked 1.70 1.69 0.520 0.505

3 (RF::Vina) Crystal Docked 1.61 1.60 0.585 0.549

4 (RF::VinaElem) Crystal Docked 1.49 1.49 0.656 0.633

2 (MLR::Vina) Docked Crystal 1.69 1.69 0.521 0.509

3 (RF::Vina) Docked Crystal 1.62 1.61 0.580 0.560

4 (RF::VinaElem) Docked Crystal 1.48 1.47 0.669 0.650

2 (MLR::Vina) Docked Docked 1.68 1.68 0.524 0.509

3 (RF::Vina) Docked Docked 1.59 1.59 0.594 0.553

4 (RF::VinaElem) Docked Docked 1.47 1.48 0.665 0.643
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Fig. 2 Box plots of performance of the four models trained on crystal and docked poses and tested also on crystal and docked poses of the PDBbind
v2007 benchmark. Model 1 is AutoDock Vina, model 2 is MLR::Vina, model 3 is RF::Vina, and model 4 is RF::VinaElem. In the x axis, trn:1 means the four
models were trained in scheme 1, i.e. on crystal poses, and trn:2 means the four models were trained in scheme 2, i.e. on docked poses. Likewise,
tst-1 and tst-2 mean the four models were tested on crystal and docked poses, respectively. Model 1 was executed out-of-the-box, so its results for
training scheme 1 were repeated for training scheme 2

(Additional file 1). Its performance degraded when tested
on docked poses of the same molecules with Rs=0.633
(Additional file 2). The impact of pose generation error
on binding affinity prediction is thus quantified by �Rs=-
0.029.
Third, for models 2, 3 and 4 tested on docked poses,

their performance was better when they were trained on
docked poses than their counterparts trained on crystal
poses (e.g. by comparing fourth and second columns in
the Rs plot of Fig. 3). In other words, a substantial part
of the pose generation was corrected. For instance, on
the PDBbind v2013 blind benchmark, model 4 trained
on docked poses obtained Rs=0.643 when tested on
docked poses (Additional file 3). Hence the impact of
pose generation error on binding affinity prediction is
reduced in a 33 % (from �Rs=-0.029 to �Rs=-0.019). This
means that a way to improve performance on docked
poses is to train the model on docked poses instead
of on crystal poses. Indeed, test set performance after
this error-correcting procedure is much closer to that
of predicting the binding affinity in the absence of pose
generation error, i.e. on crystal structures. In practice,
different scoring functions can be built depending on

whether one wants to score crystal poses or docked
poses.
Fourth, for models 2, 3 and 4 tested on crystal poses,

the models trained on docked poses (Additional file 4)
did not outperform their counterparts trained on crystal
poses. This is also well anticipated due to the impact of
pose generation error, and suggests that it is not feasible
to improve the predictive performance on crystal poses by
using docked poses for training. To sum up, if the desired
application is to score a crystal pose, it would be better
to train the scoring function on crystal poses; and if the
desired application is to score a docked pose, it would be
better to train the scoring function on docked poses.
Lastly, regardless of the training or test schemes, model

4 consistently outperformed model 3, which in turn out-
performed model 2, which in turn outperformed model
1. It is remarkable that the best scoring function, model 4
(RF::VinaElem), when trained on docked poses, achieved
the highest performance in the literature on the PDB-
bind v2007 benchmark in the more common application
of re-scoring docked poses, as it is required when carrying
out docking-based prospective virtual screening [2]. Here
we denote this version of RF::VinaElem as RF-Score-v4
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Fig. 3 Box plots of performance of the four models trained on crystal and docked poses and tested also on crystal and docked poses of the PDBbind
v2013 blind benchmark. The same notations are applied here as in Fig. 2

specifically for the purpose of binding affinity prediction
given a docked pose from Vina. Importantly, since Vina
and RF::Vina used the same features and were trained on
the same data, RF::Vina performedmuch better in predict-
ing binding affinity than the widely-used Vina software
while having the same applicability domain.

Training with more complexes on docked poses still
improves predictive performance
In a previous study [6], with the help of the PDBbind
v2013 blind benchmark, we showed that training RFmod-
els with larger datasets greatly improved their predictive
performance on scoring crystal poses, while the perfor-
mance of MLR::Vina nearly stayed flat. Here we observe
similar results when the models were trained on docked
poses and tested also on docked poses. As shown in
Fig. 4, when more complexes were used for model train-
ing, RF::VinaElem consistently increased its predictive
accuracy in terms of RMSE, SD, Rp and Rs. In contrast,
for MLR::Vina, its accuracy improvement obtained from
larger training sets was just marginal, if not negligible. The
performance gap betweenMLR::Vina and RF::VinaElem is
not only substantial, but grows as more data is available
for training, thus increasing the importance of employing
RF in scoring function development. More importantly,

the availability of crystal poses is limited by the num-
ber of experimentally resolved structures, whereas docked
poses can be generated by docking tools if their binding
site is known. This means that, by using docked poses
for training, the training data size can be remarkably
larger than limiting the training data to crystal poses only,
and therefore even higher performance could in princi-
ple be achieved by incorporating more training complexes
produced by docking.

Correlation between pose generation error and binding
affinity prediction error is low
We analyse how different RMSD values affect binding
affinity prediction by comparing the RMSD of the docked
pose with the individual absolute error in its binding affin-
ity prediction by the four models (note that the square
root of the summation of the square of these errors is the
RMSE measure). It is widely believed that the higher the
pose generation error, the larger the error on predicting
the binding affinity of that pose will be. Nevertheless, this
is actually not the case.
Figures 5 and 6 plot this information for each of the

four scoring functions trained and tested on docked
poses of the two benchmarks, respectively. Strikingly, the
four scoring functions are particularly robust to pose
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Fig. 4 Box plots of performance of the fourmodels trained on docked poses and tested also on docked poses of the PDBbind v2013 blind benchmark,
with four incrementally-sized training sets. Model 1 is AutoDock Vina, model 2 is MLR::Vina, model 3 is RF::Vina, and model 4 is RF::VinaElem

generation error, with reasonably accurate prediction still
being obtained in poses with RMSD of almost 15Å. The
Rp and Rs values stated at the top of these plots quantify
how little the pose generation error generally correlates
with the binding affinity prediction error, regardless of
whether a classical or machine-learning scoring function
is being considered. This is likely to be connected to
uncertainty associated to relating a static crystal struc-
ture of the complex with its measured binding affinity
which is the outcome of the dynamic process of bind-
ing, as discussed in [5]. To the best of our knowledge,
these behaviour has not been communicated yet for classi-
cal scoring functions, which is highly surprising given the
intense research that has been carried out over the years
in this area. On the other hand, it is noteworthy that, while
the binding affinities of some complexes are very well pre-
dicted (pKd error close to 0), some others have errors of
more than 7 pKd units (see the topleft plots for Vina).

Using multiple docked poses for training does not improve
predictive performance
In addition to using crystal and docked poses (schemes
1 and 2) for training and testing, we further evaluated

several strategies (schemes 3, 4, 5 and 6), aiming to see if
using another docked pose of a molecule, or even multiple
docked poses, could possibly increase the predictive per-
formance of the resultant models. Remember that scheme
3 uses the docked pose with the lowest RMSD, scheme
4 uses the docked pose with a Vina score closest to the
measured binding affinity, scheme 5 uses all the 9 docked
poses, and scheme 6 uses the two top-scoring docked
poses. In practice, schemes 3 and 4 cannot be used for
testing purpose because neither the RMSD nor the mea-
sured binding affinity of the test set complexes are known.
Hence, models trained in schemes 3 and 4 had to be tested
in schemes 1 and 2 instead. On the other hand, models
trained in schemes 5 and 6 can only be tested in schemes 5
and 6, respectively, because the same set of features must
be used in both training and testing.
The results of schemes 3 to 6 on the two benchmarks

are shown in Tables 3 and 4. Interestingly, when tested on
crystal poses (in scheme 1), none of the models trained in
schemes 3 to 6 outperformed their counterparts trained
in scheme 1. Similarly, when tested on docked poses (in
scheme 2), none of the models trained in schemes 3 to
6 outperformed their counterparts trained in scheme 2,
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Fig. 5 Correlation plots of predicted binding affinity absolute errors achieved by the four models trained on docked poses and tested on docked
poses of the PDBbind v2007 benchmark against the RMSD values from redocking the 195 test set complexes by Vina. Model 1 is AutoDock Vina,
model 2 is MLR::Vina, model 3 is RF::Vina, and model 4 is RF::VinaElem

either. The interpretation of such results is two-fold. First,
training with the docked pose with the lowest RMSD
(scheme 3) or the docked pose with a Vina score clos-
est the measured binding affinity (scheme 4) did not help
to improve predictive performance on the test set. Sec-
ond, training with multiple docked poses of a molecule,
instead of a specific single docked pose, did not help to
improve predictive performance either. Taken together,
these results suggest that a novel way to improve predic-
tive performance on docked poses is to train the scoring
functions on docked poses, i.e. those with the best Vina
score.

Discussions and conclusions
This is the first study that systematically investigates the
impact of pose generation error on binding affinity pre-
diction for both classical and machine-learning scoring
functions. Our comprehensive results show that pose gen-
eration error only introduces a small degradation in the

accuracy of scoring functions. To minimize this negative
impact, we found that re-training the scoring functions
on docked poses, instead of crystal poses, corrects a
substantial part of this degradation. Machine-learning
scoring functions are almost always trained on crystal
poses and tested on crystal or docked poses without
changing composition of training or test sets. Here we still
tested the scoring functions on docked poses, but now
trained them on docked poses, which has been shown to
improve test set performance with respect to the scoring
functions trained on crystal poses. In short, one straight-
forward approach to enhancing predictive accuracy on
docked poses is to re-train the scoring function on docked
poses.
We have also found that training RF::VinaElem

on docked poses with more complexes substantially
increased its predictive accuracy, whereas it was not
the case for MLR::Vina. Their performance gap will
become larger given that more and more structural and
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Fig. 6 Correlation plots of predicted binding affinity absolute errors achieved by the four models trained on docked poses and tested on docked
poses of the PDBbind v2013 blind benchmark against the RMSD values from redocking the 382 test set complexes by Vina. Model 1 is AutoDock
Vina, model 2 is MLR::Vina, model 3 is RF::Vina, and model 4 is RF::VinaElem

interaction data will be available for training in the future.
Importantly, whereas the availability of crystal poses is
limited by the number of experimentally resolved struc-
tures, docked poses of the many known ligands of these
targets can be generated by docking tools if their binding
site is known. This means that, by using docked poses for
training, the training data size can be remarkably larger
than limiting the training data to crystal poses only, and
therefore even higher performance could in principle
be achieved by incorporating more training complexes
produced by docking.
Furthermore, we investigated the dependency of RMSD

of test set complexes with binding affinity prediction. In
contrast to the commonly-held view that the higher the
pose generation error, the larger the prediction error of
the binding affinity of that pose, we actually observed that
the correlation between pose generation error and binding
affinity prediction error is low. This indicates that predict-
ing the binding affinity of a docked pose having a large

pose generation error is not necessarilymore difficult than
predicting the binding affinity of a docked pose having a
small pose generation error.
Meanwhile, we studied the effect of using docked pose

ensemble of a molecule, in addition to merely a single
pose, for training scoring functions. This is worth doing
because until now existing scoring functions all use just
one pose per molecule for training. Although our pre-
sented schemes 3 to 6 did not succeed in increasing
predictive performance, further analysis of the influence
of the number of poses on the error in binding affinity
prediction might lead to better performance.
Another contribution of this study is the release of free

software implementing RF::VinaElem trained on docked
poses, named RF-Score-v4, so that it can be directly used
by the large number of Vina users (poses generated from
other docking programs can also be re-scored by our
software once these are converted to AutoDock’s pdbqt
format). With this purpose, we have trained the best
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Table 3 Performance of models 2, 3, 4 trained in schemes 3, 4, 5, 6
and tested in schemes 1, 2, 5, 6 on the PDBbind v2007 benchmark

Model Training Test RMSE SD Rp Rs

2 (MLR::Vina) 3 1 1.89 1.85 0.629 0.675

3 (RF::Vina) 3 1 1.76 1.73 0.691 0.694

4 (RF::VinaElem) 3 1 1.58 1.45 0.795 0.792

2 (MLR::Vina) 3 2 1.88 1.85 0.630 0.661

3 (RF::Vina) 3 2 1.72 1.68 0.711 0.714

4 (RF::VinaElem) 3 2 1.57 1.45 0.793 0.780

2 (MLR::Vina) 4 1 1.93 1.93 0.589 0.648

3 (RF::Vina) 4 1 1.81 1.80 0.656 0.669

4 (RF::VinaElem) 4 1 1.63 1.53 0.769 0.769

2 (MLR::Vina) 4 2 1.94 1.93 0.589 0.636

3 (RF::Vina) 4 2 1.79 1.75 0.682 0.686

4 (RF::VinaElem) 4 2 1.63 1.53 0.769 0.762

2 (MLR::Vina) 5 5 1.90 1.89 0.609 0.641

3 (RF::Vina) 5 5 1.74 1.70 0.700 0.699

4 (RF::VinaElem) 5 5 1.65 1.55 0.760 0.754

2 (MLR::Vina) 6 6 1.86 1.83 0.640 0.670

3 (RF::Vina) 6 6 1.73 1.69 0.707 0.707

4 (RF::VinaElem) 6 6 1.60 1.49 0.780 0.769

Table 4 Performance of models 2, 3, 4 trained in schemes 3, 4, 5,
6 and tested in schemes 1, 2, 5, 6 on the PDBbind v2013 blind
benchmark

Model Training Test RMSE SD Rp Rs

2 (MLR::Vina) 3 1 1.70 1.69 0.521 0.511

3 (RF::Vina) 3 1 1.60 1.58 0.602 0.575

4 (RF::VinaElem) 3 1 1.48 1.48 0.666 0.643

2 (MLR::Vina) 3 2 1.69 1.69 0.523 0.509

3 (RF::Vina) 3 2 1.59 1.58 0.601 0.562

4 (RF::VinaElem) 3 2 1.49 1.49 0.655 0.635

2 (MLR::Vina) 4 1 1.88 1.80 0.413 0.415

3 (RF::Vina) 4 1 1.72 1.71 0.499 0.477

4 (RF::VinaElem) 4 1 1.57 1.57 0.610 0.589

2 (MLR::Vina) 4 2 1.77 1.75 0.468 0.447

3 (RF::Vina) 4 2 1.70 1.66 0.544 0.508

4 (RF::VinaElem) 4 2 1.58 1.57 0.611 0.582

2 (MLR::Vina) 5 5 1.65 1.65 0.550 0.526

3 (RF::Vina) 5 5 1.58 1.58 0.603 0.578

4 (RF::VinaElem) 5 5 1.49 1.50 0.653 0.633

2 (MLR::Vina) 6 6 1.68 1.68 0.526 0.514

3 (RF::Vina) 6 6 1.57 1.57 0.608 0.581

4 (RF::VinaElem) 6 6 1.47 1.48 0.665 0.643

of RF-Score-v4 on the most comprehensive set of high-
quality complexes (the 3441 complexes from the PDBbind
v2014 refined set) and implemented it as easy-to-use soft-
ware that directly re-scores Vina-generated poses. See the
abstract for availability and the README file therein for
operating instructions.
Last but not the least, although we only used RF in this

study as a proof of concept, we believe our conclusions
can be applicable to other machine-learning scoring func-
tions, which could possibly achieve even better results on
this problem.
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