

Sports Science, Medicine & Rehabilitation

### ORAL PRESENTATION

**Open Access** 

# Bone mineral density in elite rowers

Bronwen Lundy<sup>1\*</sup>, Larissa Trease<sup>2</sup>, Drew K. Michael<sup>1,3,4</sup>

*From* World's Leading Rowing Sport Science and Medicine Conference - "Improving Performance Naturally" Marlow, UK. 22-25 January 2015

#### Background

Bone mineral density (BMD) is known to be dependent on the loading pattern associated with a particular sport. High impact sports increases BMD at loaded sites with low impact sports having largely neutral findings [1]. The influence of high level rowing training has not been well explored with relatively small samples within a single category or discipline [2-5].

#### Methods

Subjects (n=125) were internationally competitive. Between 2011-2014 BMD was taken at the lumbar spine (L1-L4) and left femur, by Dual-energy X-ray absorptiometry (DXA, Lunar Prodigy, GE Healthcare), using the same scanner, and a qualified technician. Ethics was approved by the Australian Institute of Sport Human Ethics committee. Subjects gave prior written informed consent. Descriptive statistics are reported as mean  $\pm$  standard deviation (range), Z-score and T-score. Statistical analysis was performed using independent samples t-test, significance set at p<0.05.

#### Results

A summary of findings is shown in Table 1. Overall, 5.6% of rowers had  $Z \leq -1$  at the spine and 1.6% at the femur with none Z < -2. Both spine and femur BMD, T and Z scores were lower for female lightweights than heavyweights. Male spine BMD and T score and femur T score was lower for lightweights relative to heavyweights.

#### Table 1. BMD in males and female rowers by weight category. Data are expressed mean ± standard deviation (range)

|                   | Males           |                   |                   | Females       |                   |                   |
|-------------------|-----------------|-------------------|-------------------|---------------|-------------------|-------------------|
| n                 | Overall<br>72   | Lightweight<br>31 | Heavyweight<br>41 | Overall<br>53 | Lightweight<br>20 | Heavyweight<br>33 |
|                   |                 |                   |                   |               |                   |                   |
| g/cm <sup>2</sup> | 1.33 ± 0.13     | 1.27 ± 0.10 *     | 1.38 ± 0.12       | 1.29 ± 0.14   | 1.19 ± 0.09 *     | 1.35 ± 0.14       |
|                   | (1.07 -1.67)    | (1.07 -1.46)      | (1.09 – 1.67)     | (1.05-1.67)   | (1.05 - 1.33)     | (1.07 - 1.67)     |
| T score           | 0.9 ± 1.1       | 0.2 ± 0.9 *       | 1.3 ± 1.0         | 0.6 ± 1.1     | -0.3 ± 0.7 *      | 1.0 ± 1.1         |
|                   | (-1.3-3.5)      | (-1.3 - 1.7)      | (-1.1 – 3.5)      | (-1.2-3.5)    | (-1.2 - 0.9)      | (-1.0 - 3.5)      |
| Z score           | 0.7 ±1.0        | 0.5 ± 1.9         | 0.8 ± 1.0         | 0.4 ±1.0      | $0.1 \pm 0.7 *$   | 0.7 ± 1.0         |
|                   | (-1.5-3.2)      | (-1.2 - 1.9)      | (-1.5 – 3.2)      | (-1.3-3.3)    | (-1.0 - 1.2)      | (-1.3-3.3)        |
| Femur             |                 |                   |                   |               |                   |                   |
| g/cm <sup>2</sup> | $1.19 \pm 0.13$ | $1.16 \pm 0.13$   | 1.21 ± 0.12       | 1.12 ±0.13    | 1.05 ± 0.09 *     | 1.17 ± 0.13       |
|                   | (0.97-1.58)     | (1.00 -1.54)      | (1.02 - 1.58)     | (0.87-1.61)   | (0.87 -1.23)      | (0.96 - 1.61)     |
| T score           | 0.7 ± 1.0       | $0.4 \pm 0.9$     | 1.0 ± 0.9         | 0.5 ±0.9      | $0.0 \pm 0.7 *$   | $0.8 \pm 0.8$     |
|                   | (-1 – 3.8)      | (-1.0 - 2.2)*     | (-0.6 - 3.8)      | (-1.4-3.2)    | (-1.4 - 1.3)      | (-0.7 - 3.2)      |
| Z score           | $0.5 \pm 0.9$   | $0.4 \pm 0.9$     | 0.5 ± 1.0         | 0.3 ±0.78     | 0.2 $\pm$ 0.8 *   | $0.4 \pm 0.8$     |
|                   | (-1 – 3.4)      | (-0.9 - 2.3)      | (-1.0 - 3.4)      | (-1.1-3.0)    | (-1.1 - 1.6)      | (-0.8 - 3.0)      |

\* significantly lower than for heavyweights within the same gender (p<0.05)

\* Correspondence: bronwen.lundy@ausport.gov.au

<sup>1</sup>Australian Institute of Sport, Canberra, Australia

Full list of author information is available at the end of the article



© 2015 Lundy et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http:// creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/ zero/1.0/) applies to the data made available in this article, unless otherwise stated.

#### Conclusion

BMD of elite rowers appears to fall largely within the optimal range for the general population however light-weight rowers, tended to have lower BMD than their heavyweight counterparts at all measured sites at the spine and for females also at the femur.

#### Authors' details

<sup>1</sup>Australian Institute of Sport, Canberra, Australia. <sup>2</sup>Principal Medical Officer, Rowing Australia, Canberra, Australia. <sup>3</sup>Department of Physiotherapy, Faculty of Health, University of Canberra, Australia. <sup>4</sup>Australian Centre for Research into Injury in Sport and its Prevention (ACRISP), Federation University, Australia.

#### Published: 11 August 2015

#### References

- Scofield KL, Hecht S: Bone health in endurance athletes: runners, cyclists, and swimmers. Curr Sports Med Rep 2012, 11(6):328-334.
- Dimitriou L, Weiler R, Lloyd-Smith R, Turner A, Heath L, James N, Reid A: Bone mineral density, rib pain and other features of the female athlete triad in elite lightweight rowers. *BMJ Open* 2014, 4(2):e004369.
- Young KC, Kendall KL, Patterson KM, Pandya PD, Fairman CM, Smith SW: Rowing Performance, Body Composition, and Bone Mineral Density Outcomes in Collegiate-Level Rowers Following a Season of Concurrent Training. Int J Sports Physiol Perform 2014, 9(6):966-972.
- Vinther A, Kanstrup IL, Christiansen E, Ekdahl C, Aagaard P: Testosterone and BMD in elite male lightweight rowers. Int J Sports Med 2008, 29(10):803-807.
- Vinther A, Kanstrup IL, Christiansen E, Alkjaer T, Larsson B, Magnusson SP, Aagaard P: Exercise-induced rib stress fractures: influence of reduced bone mineral density. Scand J Med Sci Sports 2005, 15(2):95-99.

#### doi:10.1186/2052-1847-7-S1-O6

Cite this article as: Lundy et al.: Bone mineral density in elite rowers. BMC Sports Science, Medicine and Rehabilitation 2015 7(Suppl 1):O6.

## Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit