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Abstract

Background: Therapy-related, secondary acute myeloid leukemia (t-AML) is an increasingly frequent complication
of intensive chemotherapy. This malignancy is often characterized by abnormalities of chromosome 7, including
large deletions or chromosomal loss. A variety of studies suggest that decreased expression of the EZH2 gene
located at 7g36.1 is critical in disease pathogenesis. This histone methyltransferase has been implicated in
transcriptional repression through modifying histone H3 on lysine 27 (H3k27). However, the critical target genes of
EZH2 and their regulatory roles remain unclear.

Method: To characterize the subset of EZH2 target genes that might contribute to t-AML pathogenesis, we
developed a novel computational analysis to integrate tissue-specific histone modifications and genome-wide
transcriptional regulation. Initial integrative analysis utilized a novel “seq2gene” strategy to explore largely the
target genes of chromatin immuneprecipitation sequencing (ChIP-seq) enriched regions. By combining seg2gene
with our Phenotype-Genotype-Network (PGNet) algorithm, we enriched genes with similar expression profiles and
genomic or functional characteristics into “biomodules”.

Results: Initial studies identified SEMA3A (semaphoring 3A) as a novel oncogenic candidate that is regulated by
EZH2-silencing, using data derived from both normal and leukemic cell lines as well as murine cells deficient in
EZH2. A microsatellite marker at the SEMA3A promoter has been associated with chemosensitivity and
radiosensitivity. Notably, our subsequent studies in primary t-AML demonstrate an expected up-regulation of
SEMA3A that is EZH2-modulated. Furthermore, we have identified three biomodules that are co-expressed with
SEMA3A and up-regulated in t-AML, one of which consists of previously characterized EZH2-repressed gene targets.
The other two biomodules include MAPK8 and TATA box targets. Together, our studies suggest an important role
for EZH2 targets in t-AML pathogenesis that warrants further study.

Conclusion: These developed computational algorithms and systems biology strategies will enhance the
knowledge discovery and hypothesis-driven analysis of multiple next generation sequencing data, for t-AML and
other complex diseases.
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Introduction

The significance of non-coding DNA regulators in
human disease has drawn increasing attention. For exam-
ple, human non-coding regions contain collections of
transcription factor binding sites and other regulatory
elements called “cis-regulatory” regions. These cis-regula-
tory elements are sufficient to activate transcription in a
defined spatial and temporal expression domain [1].
Cis-regulation can occur on either side of a target tran-
script and regulators can reside far from their regulatory
targets [2]. However, identifying cis-regulatory elements
and their domain-specific targets remains a major chal-
lenge for current computational biology. To address the
challenge, we here perform a “sequence-regulator-
network” study to integrate information from histone
modification and transcriptional regulation. This method
both generates and validates genomic hypotheses, and
could have a broad impact in studying regulatory
mechanisms of gene expression in systems biology. Here,
we select therapy-related acute myeloid leukemia
(t-AML) as a clinically significant context to apply the
method.

T-AML, including therapy-related myelodysplastic syn-
drome, accounts for approximately 10 to 20 percent of
myeloid malignancies [3]. T-AML complicates conven-
tional chemoradiotherapies that are used to treat a variety
of primary malignancies and is associated with a uniformly
poor prognosis, with a median survival of six months [3].
Complete loss of chromosome 7 (-7) and 5 or partial dele-
tion involving the long arm of chromosome 7 (del7q) are
highly recurrent chromosomal aberrations in AML and
t-AML.

Specific interest has focused on the link between com-
mon chromosome 7 abnormalities and the location of
the EZH2 gene, the histone methyltransferase enhancer
of Zeste homologue 2 present at position 7q36.1 [4].
Not surprisingly, EZH2 expression is significantly
reduced in -7/del7q patients with myeloid disorders
when compared with healthy controls [5]. What remains
an enigma is the recently reported dual role of EZH2 in
malignant cell development. EZH2 is a component of
the polycomb group complex, which is vital for hemato-
poietic cell development. In normal cells, EZH2 sup-
presses its targets through depositing the histone
modification mark H3K27me3 (trimethylation on lysine
27 of histone H3) [6]. In several epithelial cancers, over-
expression of wild-type EZH2 has been found to pro-
mote tumor progression or metastasis [7,8]. However,
inactive mutated EZH?2 or its low expression in myeloid
malignancy contributes to tumorigenesis by suppressing
differentiation, thus directing cells toward a leukemic
stem cell state [5,9,10]. Conflictingly, Xu et al. reported
that EZH2 overexpression was associated with poor
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patient outcome in myeloid disorders and chemotherapy
reduced expression of EZH2 [11].

These conflicting observations about EZH2 suggest a
context-specific regulatory mechanism, which may be
explained by plastic epigenetic modification [12]. Histone
methylation is an important epigenetic modification in
chromatin. The histone modification mark H3K27me3
reflects EZH2-involved Polycomb-mediated repression,
and the deposition of H3K27me3 is development- stage-,
and tissue-specific [13]. Thus, we studied the presence of
H3K27me3 to understand the conflicting roles of
EZH2 — as either an oncogene or a tumor suppressor in
different tumors. However, abnormal EZH2-associated
regulation to particular target genes remains unclear in
leukemia, specifically in t-AML.

Using ChIP-seq (Chromatin Immunoprecipitation
Sequencing) of histone marks and other regulatory pro-
teins, researchers can perform genome-wide searches for
intergenic functional elements (including promoters and
enhancers), but might also identify non-enhancers with
similar signatures [14]. Therefore in this study, we evalu-
ated whether the selective regions control the develop-
mental expression of the target genes using transcriptomic
measurements. To identify EZH2 target genes and their
functional regions in t-AML, we developed a novel com-
putational integrative analysis with histone modification of
H3K27me3 and gene expression.

In the proposed integrative analysis, there are three dis-
tinguishing features: 1) a novel “seq2gene” strategy links
genomic regions to more neighboring coding genes on
both sides, 2) selective transcriptional and epigenetic data
mining between cells, and 3) the prediction of “biomo-
dules”. The seq2gene strategy links genomic regions to a
broad range of neighboring genes rather than the nearest
one. The rationale is that enhancers can target long-
range DNA targets, and often multiple enhancers (five or
more) target the same genes [14]. The strategy then
incorporates epigenetic regulatory patterns that differ
between cell lines with disease-specific transcript altera-
tions in t-AML. Finally, the selected target gene (seed) is
associated with a group of genes, the “biomodule” that
share similar expression patterns and genomic or func-
tional characteristics, using our PGNet algorithm [15].

This integrative “sequence-regulator-network” study
revealed SEMA3A (semaphoring 3A) as a novel target of
EZH2-silencing in t-AML. The fact that EZH2 and
SEM3A3 are inversely expressed in vivo is supported by
previous data in mouse haematopoietic stem cells and
human prostate cancer [16,17]. We predict that the loss
of EZH2 silencing on SEMA3A augments sensitivity to
both chemo- and radiotherapy, and thus may contribute
to therapy-related AML pathogenesis. We also show
that a group of SEMA3A-coexpressed genes, including
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HOXA11, are up-regulated in t-AML and have been
reported as EZH?2 targets. We expect further validation
both in vitro and in vivo.

Result

Identification of SEMA3A, a loss-of-EZH2-mediated
silencing gene in leukemia

To systematically screen functional elements of histone
modified EZH?2 targets in leukemia, we used the data in
the Encyclopedia of DNA Elements (ENCODE, genome.
ucsc.edu/ENCODE/) Project [18]. We identified 104,370
genomic regions that are enriched for both EZH2 and
H3K27me3 in the leukemia cell line (K562) and 53,360
regions in the lymphoblastoid cell line (GM12878). The
large number of enriched regions (peaks) suggests sub-
stantial downstream effects of EZH2 repression. EZH2
occupancy and presence of H3K27me3 at promoters
directly silences the transcription of targeted genes,
which has been observed in leukemia and other tumors
[19,20]. Given this, we predict that genes adjacent to
these non-coding regions are EZH2 repressive target
candidates.

To discover target candidates, we associated coding
genes residing in a given search radius to the identified
regions, using a “seq2gene” mapping strategy (Figure 1A).
Seq2gene considers the possibility that genes in both
directions from each intergenic cis-regulatory element
may fall under control, given the observation that enhan-
cers reside on average 120-thousand base pairs (bps)
away from their regulatory targets and act independently
of their orientation in mammals [2,14,21]. This consid-
eration resulted in mapping around 90% of EZH2 and
H3K27me3 co-mediated loci to neighboring genes within
an arbitrary distance of 150k-bp on both sides, of which
only 31% are coding genes (Figure 1B, the ENSEMBL
Hg19 assembly and definition).

To focus on EZH2-mediated coding-gene silencing
that is specific to leukemia, we compared the candidates
in leukemia with lymphoblastoids. Only around 10% of
the identified ~17,400 EZH2 repressed coding-gene can-
didates are disease-specific, resulting in 1624 genes spe-
cific to lymphoblastoid but not leukemia (Figure 1C).
Gene Ontology enrichment analysis suggests a loss of
leukemia-specific repressive control on the molecular
function termed “hematopoietin/interferon-class (D200
domain) cytokine receptor binding” (GO:0005126,
FDR = 0.0017, count = 12), reflecting a cell quiescence-
involved, generic cancer metastatic mechanism [22,23].

We subsequently identified SEMA3A as an EZH2
repressive target of interest. This identification is derived
from sequence-based analysis and transcriptional evi-
dence (Figure 1D). From the ChIP-seq peaks in the lym-
phoblastoid cell line, we observed EZH2 occupancy and
presence of H3K27me3 adjacent to the transcription
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start site of SEMA3A and 20 other genes (Additional
file: Table S1). These 21 genes significantly over-represent
genes highly expressed in prostate cancer cells after
knockdown of EZH2 [16] (p = 0.009, OR = 5.8) and genes
down-regulated in fibroblasts expressing mutant forms of
ERCC3 after UV irradiation [24] (P = 0.0046, OR = 7.1).
As ERCC3 could help increase the sensitivity of cancer to
radiation therapy, loss of EZH2-repression of these
ERCCS3 targets in t-AML indicates an increased radiosen-
sitivity. Specifically, the transcriptional expression of
SEMAS3A is negatively EZH2-dependent in both human
cancer and mouse model in vivo. For example, Merchan
et al. generated mouse models that allow gain-of-function
of Ezh2 in the haematopoietic system [17], and we identi-
fied a 2.2-fold decrease of Sema3a expression in Ezh2+
mice compared with wild-types (Q-value = 0.05, the
limma test [25]). However, in the leukemia cell line, a peak
with both EZH2 and H3K27me3 enrichment has not been
observed in the human genomic region within 150kbp dis-
tance to SEMA3A, suggesting a leukemia-specific loss of
EZH2-silencing on SEMA3A.

High-expression of SEMA3A may contribute to t-AML
pathogenesis by augmenting chemosensitivity and
radiosensitivity

We observed the loss of EZH2 and H3K27me3 enrich-
ment on the SEMA3A promoter in leukemia (Figure 1C-
D) and hypothesized that this loss rescues SEMA3A
expression and facilitates leukemogenesis after chemo-
or radiotherapy.

To validate this hypothesis, we investigated CD34+
cells from 28 t-AML patients including 8 with -7/del7q
abnormality, and 24 normal controls (Table 1). Expres-
sion profiles of samples collected from different labora-
tories were adjusted for batch effects [26] (Additional
file: Fig. S1) and then t-AML samples were compared to
normal controls. There are 370 significantly up-
regulated and 686 down-regulated genes (Q-value<0.05,
FC>2 or <0.5) when comparing -7/del7q t-AML samples
with controls.

Significantly, SEMA3A shows up-regulation in patients
with t-AML (Q-value = 1.1e-9, FC = 2.3, Figure 2A), even
in patients with deletion of chromosome 7 or loss of chro-
mosome 7q (FC = 2.2, Q-value = 4.6e-5, Figure 2B). In
contrast, EZH?2 was significantly down-regulated in t-AML
(Q-value = 2.3e-07 and 0.00032, FC = 0.55 and 0.54,
respectively). Besides SEMA3A, there are another 7 genes
(AGR2, EVX, HOXA11, MET, PGAM2, BRAF, and UPPI)
residing on chromosome 7 are significantly up-regulated
in t-AML even with -7/del7q abnormality (Figure 2B-C).
Three of them (HOXA11, MET, BRAF) are potential onco-
genes currently being observed for common copy-number
gains in a meta-analysis of copy number alterations across
a panel of different cancer cell lines and tumor samples
[27]. Their high expression suggests that a loss of EZH2
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Figure 1 Identification of SEMA3A, a loss-of-EZH2-mediated silencing gene in leukemia. A) The seg2gene strategy links genomic regions
to coding genes with annotation. B) For both cell lines, more than 90% of the EZH2 and H3K27me3 co-binding regions are linked to intergenic
coding and non-coding genes (red arc and box), 31% of which are coding-genes. C) Leukemic and lymphobilastic cell-specific EZH2 and
H3K27me target genes. D) SEMA3A loses EZH2-silencing in leukemia but with EZH2-dependent expression changes in two independent
experiments (the white circles). The gray circle represents 1624 predicted co-binding sites specific to lymphoblastoids identified in panel C.
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Table 1. Six studies pertaining to CD34+ cells in t-AML and normal controls

GSE24006 GSE30377 GSE17054 E-TABM-978 Qian GSE23025 sum
Journal leukemia  Nat. Med PNAS Cancer Cell PNAS Cancer Cell
year 2011 2011 2009 2011 2002 2011
Platform Hgu133+2 Hgul33a  Hgu133+2 HsHT-12 Hgu95av2 Hgu133+2
PMID 21177505 21873988 19218430 21251617 12417757 22094254
t-MDS/tAML CD34+ progenitor (BM), -5/del5q 4 1 28
t-MDS/tAML CD34+ progenitor (BM), -7/del7q 3 3
t-MDS/tAML CD34+ progenitor (BM), -5/del5q or -7/del7q 2
t-MDS/tAML CD34+ progenitor (BM), normal 5 and normal 7 7 8
normal progenitor (CD34+, BM) 2% 24
normal HSC+ (CD34+CD133+, BM)
normal HSC+ (Lin-CD34+CD38-, PB) 3
normal HSC+ (Lin-CD34+CD38loCD36-, PB) 3
normal HSC+ (Lin-CD34+CD38-CD90+, PB or BM) 4
normal HSC+ (Lin-CD34+CD38-CD90+CD45RA-, PB) 3
normal HSC+ (Lin-D34+CD38-CD90+CD45RA-, BM) 4 5

* Among 3 author collected samples, the one from a patient with breast cancer was excluded and the other two were included.

PBSC: peripheral blood stem cells; BM: bone marrow samples

regulation dominates the expression changes of SEMA3A
and HOXA1I.

More importantly, significantly higher expressed
SEMA3A was previously reported in chemosensitive can-
cers than in chemoresistant tumors [28,29]. Additionally,
an identified EZH2-H3K27me3-enriched promoter
region of SEMA3A (Chr7:83,814,596-83,835,002) covers a
microsatellite marker that is significantly associated with
acute adverse effects following radiotherapy in cancer
patients [30] (Figure 3A). Note that the Phylop score,
corresponding to cross-species genome conservation
[31], is relatively high within this marker (Figure 3B),
suggesting that it is functionally important. This observa-
tion agrees with the previous finding that biochemical,
evolutionary, and genetic approaches provide comple-
mentary information for defining functional DNA
segments [32]. This intergenic region (D7S0338i,
chr7:83,825,594-83,825,895, Hgl9 assembly) is 1.5k-bp
upstream of the transcription start site of the SEMA3A
gene. Evidence from normal skin cells has proven that
SEMA3A knockdown enhances radiation resistance, sug-
gesting an increased radiosensitivity with loss-of-silen-
cing on SEMA3A in leukemia [30].

The stem cell self-renewal HOX gene family has
been described as a major downstream target of EZH2.
Unlike HOXA11, the other four HOX family genes
(HOXA3, HOXA4, HOXAS5, and HOXA9) are down-
regulated when comparing -7/del7q t-AML cells
against controls (Q-value<0.001, fold change (FC)<0.4,
Figure 2C). Of note, sublethally irradiated Hoxa9-/-
mice exhibited prolonged suppression of hematopoiesis
and developed persistent pancytopenia [33], indicating

an enhanced sensitivity to ionizing irradiation in t-
AML cells with deficient HOXA9.

Genes co-regulated with SEMA3A in t-AML are enriched
in EZH2 repressed targets

To further study SEMA3A function in t-AML, we investi-
gated the functional enrichment among genes sharing an
expression pattern with SEMA3A. Previously, we devel-
oped a phenotype-genotype network analysis (PGNet)
algorithm to define a group of genes that share signifi-
cant concurrence of expression pattern with respect to
sample grouping (a phenotype of interest) and gene regu-
lation (a genotype of interest) [15]. The PGNet algorithm
was successfully applied to identify epigenetic regulators,
despite the fact that transcriptional signatures of epige-
netic regulation is subtle [34,35], thus vetting the method
for our similar such application. Using PGNet, we
defined 66 genes that meet two criteria among 28
patients and 24 controls: 1) systematic co-expression
with SEMA3A, and 2) higher expression in t-AML than
in normal samples (among the top 150 ranks for both
statistics). The similarity of the orders of these two gene
expression statistics are significant at the top ranks but
not the bottom ranks (empirical p = 0.037, permutation
times = 1000). Specifically displayed in Figure 4A are the
numbers of genes in which these two top ranks overlap.
The overlap size is drawn as a step function over the
respective ranks. Top ranks correspond to up-regulation
in t-AML and positive correlation with SEMA3A, and
bottom ranks correspond to down-regulation and nega-
tive correlation. The PGNet algorithm also identified 63
genes when comparing -7/del7q t-AML patients (n = 8)
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Figure 2 Gene differential expression in t-AML compared with controls. A) Significantly differentially expressed genes in t-AML when
compared with normal HSC+ cells (Q-value<0.05). B) Significantly differentially expressed genes in -7/del7q t-AML when compared with normal
HSC+ cells (Q-value<0.05). C) The significantly up-regulated (red) or down-regulated (blue) genes in —7/del7q t-AML, residing on chromosome 7.
The non-significant genes are in gray. The HOX family genes in 7p15.2 consist of both up- and down-regulated genes.

to controls and modifying the second criteria appropri-
ately (top 150 for both statistics, empirical p = 0.024). Of
note, 52 genes overlap between the two defined gene-sets
(Figure 4B, Additional file: Table S2), suggesting a com-
mon transcriptional regulatory mechanism in t-AML
with or without chromosome 7 loss.

Importantly, we found three functional biomodules
among the 52 genes correlated with SEMA3A (Fisher’s
exact test, p < 0.001, count>5, Figure 4C, Table 2). One
module includes nine genes (EIF2AK2, GULP1, CAP2,
GJA1, SEMA3A, KRT34, SERPINB7, BBC3, KLK10, p =
0.001) that were up-regulated in PC3 cells (prostate can-
cer) after knockdown of EZH2 by RNAi [16]. Shown in
Figure 4B2, the expression patterns of these EZH2-

repressed genes (blue lines) are correlated with
SEMAB3A (red line) and are higher in t-AML than in
controls. These genes constitute a biomodule represent-
ing the expression pattern of a loss of EZH2-silencing.
Another identified module is 12 TATA box binding pro-
tein genes with promoter regions (defined as +2kb around
the transcription start site) containing the motif
TATAAA, including SEMA3A and HOX11A (p = 4.6e-4,
Figure 4C). The HOX gene family is recognized as a major
downstream target of EZH2 [12]. This supports the notion
of SEMA3A-correlated HOX11A up-regulation in t-AML.
The third and most significant biomodule is 13 genes up-
regulated in vascular smooth muscle cells by MAPKS (p =
1.6e-5) [36]. MAPKS, also known as JNK1, encodes many
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Figure 3 Genomic view of the SEMA3A promoter. A) The SEMA3A promoter is enriched with EZH2 and H3K37me3 in the lymphoblastoid cell
line (GM12878) but not in the leukemic cell line (K562). B) This promoter region loses EZH2-silencingand covers a microsatellite marker, D750338i,
which is significantly associated with acute adverse effects during radiotherapy in cancer patients.

transcripts and is activated by various cell stimuli. The bio-
module of MAPK8-induced and t-AML highly expressed
genes supports the observation that MAPKS is involved in
carcinogenesis [37]. The regulatory mechanism linking
MAPKS8 and SEMA3A remains unclear. Additionally, a
previous study shows that the EZH2 “loss-of-function”
mutation contributes to formation of the leukemic stem
cell by mediating self-renewal of myeloid progenitors [9],
indicating that the loss of EZH2 silencing on SEMA3A
contributes to leukemogenesis in t-AML.

Method

Data

The chromatin immunoprecipitation sequencing (ChIP-
seq) peaks for EZH2 occupancy and presence of
H3K27me3 were downloaded from the Encyclopedia of
DNA Elements (ENCODE, Release 3, hgl9 assembly)

[38]. We focused on human blood cell lines: K562 from
leukemia and GM12878 from lymphoblastoid cell of a
female donor.

We collected published expression levels of CD34+
progenitor cells from 28 t-AML patients and 24 healthy
control samples (Table 1) [39-43]. Samples from
patients with breast cancer or lymphoma before the
development of t-AML were excluded from the control
group [39,40].

Functional gene-sets were defined by the MsigDB
database [44].

Identifying target genes of transcription regulators or
histone marks

To define the EZH2 repressed targets in a cell line, we
performed a two-step analysis: 1) intersecting significant
ChIP-seq peaks of EZH2 and H3K27me3 to find the
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Figure 4 PGNet identifies three biomodules. A) The significance exists among top ranks but not the bottom ranks when comparing orders of
two genome-wide gene expression statistics, one is the correlation with SEMA3A and the other is the differential expression between t-AML and
control. The black line records the overlap among the top 150 ranks, while the orange line is the estimated overlap by chance. In addition, the
expected overlap and 95% confidence intervals derived from a hypergeometric distribution are shown. B) 52 intersecting genes were commonly
identified when the second statistic of the PGNet algorithm comparing t-AML to controls or -7/del7q t-AML to controls (subpanel 1). The
expression values of these 52 genes (gray) are lines along with t-AML and control samples in subpanel 2, the red line sketches SEMA3A and the
blue lines outline the other EZH2 targets in prostate cancer. C) Functional enrichment analysis identifies three sub-sets of genes from SEMA3A
and the 52 genes, each sub-set significantly over-represented one MSigDB defined functional gene-sets (p < 0.001, count>5). Genes are marked
as circles, and their functional terms are marked as squares. The expression pattern of EZH2 targets is highlighted as blue lines in Fig B2.
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Table 2. Three functional and transcriptional biomodules
MsigDB definition Fisher's
exact test
Gene-set Category Description Pubmed Size P OR #
YOSHIMURA_MAPK8_TARGETS_UP CGP Genes up-regulated in vascular smooth muscle cells (VSMC) by 16311603 1305 1.6e- 50 13
MAPK8 (JNKT) 5
TATAAA_VSTATA_O1 Motif Genes with promoter regions [-2kb,2kb] around transcription start NA 1296 46e- 37 12
site containing the motif TATAAA which matches annotation for 4
TAF TATA
NUYTTEN_EZH2_TARGETS_UP CGP Genes up-regulated in PC3 cells (prostate cancer) after knockdown 17724462 1037 1.1e- 40 9
of EZH2 by RNAI. 3

CGP: Gene-sets represent expression signatures of genetic and chemical perturbation; OR: odds ratio; #: count.

common enriched genomic regions; 2) finding candidate
target genes and annotating them using the seq2gene
strategy (Figure 5). Note that the bisection method is
used to perform a binary search among exon and tran-
script annotations. To perform a search with respect to
exon and transcript separately, we have prepared the
“exon.table” and “transcript.table” files based on the
ENSEMBL general feature format for end users (Figure 5).
Both files use ENSEMBL IDs as the key index. This analy-
sis was performed for each cell line separately.

Analyzing transcriptomic data

Data pre-processing. The normalized expression profiles
were downloaded from the Gene Expression Omnibus
(GEO, www.ncbi.nlm.nih.gov/geo/) or ArrayExpress
(www.ebi.ac.uk/arrayexpress/). The raw data from the
Qian’s dataset was processed using the global rank-
invariant normalization (GRSN) [45]. Gene expression
profiles were log2-transformed if authors hadn’t already
done so. When collapsing probes to genes for each data-
set, probes with the same Entrez IDs were collapsed to
the maximum mean expression per gene using an
empirically recommended method [46] and the Biocon-
ductor annotation package biomaRt (v2.18.0), resulting
in a set of 8442 human Entrez genes measured across
all cohorts. The batch effects due to multi-datasets were
removed by an empirical Bayes method using the Bio-
conductor package sva [26,47] (Additional file: Fig. S1).
Then a smaller data space of 4221 genes was considered
for the following analysis by keeping the half of genes
with the highest interquartile range [48].

Identifying biomodule

Step 1 to build biomodules: transcriptional association.
To identify the potential upstream regulators or down-
stream targets of the genes that drive the tumorigenesis
in t-AML, we applied the PGNet method [49]. PGNet
evaluates the similarity of the gene orders between two
independently ordered lists. Specifically, we used PGNet
to compare genome-wide correlated expressions with a
seed gene and the differential expressions between two

sample groups and yielded a regulatory network of genes
that are mutually associated. To identify the potential
downstream regulatory targets of SEMA3A, we inputted
it as a seed gene together with the phenotype information
(t-AML: n = 28, normal control: n = 24) into the PGNet
system to infer a regulatory network [49]. Differential
expression (DE) was estimated using the Bioconductor
package Limma [25] and co-expression (CE) was evalu-
ated by the Pearson correlation test on the log-trans-
formed data. The resulting p-values were adjusted by a
Q-value for false discovery rate in the multiple testing
problem [50,51]. The significance of the similarity
between the two statistics (coefficient and fold change)
was estimated using an empirical p-value based on per-
mutation (n = 1000), using the Bioconductor package
OrderedList [35]. We also tested the differential expres-
sion between -q/del(7q) t-AML (n = 8) and normal con-
trols to determine whether a regulatory biomodule for
t-AML is consistent despite loss of chromosome 7.

Step 2 to build biomodules: genomic or functional
enrichment. The over-representation of functional gene-
sets among the identified biomodule was evaluated
using a conditional hypergeometric distribution test
(Additional file: Fig. S2). Note that only the true back-
ground, the common genes within MSigDB and those
covered by the experiment, were used for the test. We
used a threshold of Q-value<0.001 and count>5 for sig-
nificance over MSigDB defined functional genesets [44].

Discussion

The ENCODE project increasingly produces genomic
data on transcription factor binding, chromatin structure
and histone modification. Interpreting transcriptional
regulation in relation to chromatin modifications has
been recognized as a powerful strategy to discover and
understand intergenic regulatory elements (reviewed by
Kellis et al. [32]). However, ChIP-seq enrichment for
chromatin modification and differential expression for
transcriptional control may provide complementary
information. Thus, the simple overlap strategy, that we
here used, may discover only limited targets [52]. We


www.ncbi.nlm.nih.gov/geo/
www.ebi.ac.uk/arrayexpress/
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Algorithm: seq2gene
Input. peaks, exon.table, transcript.table, search radius
Ouitput. peak with annotated gene information

for i:= 1 to length(peaks) do begin:

end

*: more details about distance, promoter and bidirectional region judgment

Figure 5 Pseudo code of the seq2gene algorithm.

m = peakleft
n = peakright
middle = (m+n)/2
locate the nearest exon(J) for peak(i) by the basic bisect algorithm
if peak(i) resides inside exon(J)
report peak(i) with exon(J)
endif
while exon(x) intersecting with peak(i)
report peak(i) with exon(x)
exon(x) =the closest exons (left or right)
endwhile
locate the nearest transcript(H) by the basic bisect algorithm
if peak(i) resides outside transcript(H)
report peak(i) with transcript(H), intergenic region *
else
report peak(i) with transcript(H), intron region
endif
for transcripts(t) within the position of transcript(H)+ search radius
if peak(i) resides outside transcripts(t)
report peak(i) with transcripts(x), intergenic region *
else
report peak(i) with transcripts(x), intron region
endif
end

J

expect additional strategies to reveal more candidates transcriptionally associated gene-sets (biomodules). The
than just a single locus to elucidate genomic function in  identified biomodule of EZH2-suppressed targets that
human biology and diseases. To address this challenge, up-regulated in t-AML in conjunction with SEMA3A, in
we piloted the application of the PGNet algorithm turn, evaluated our hypothesis that SEMA3A is a critical
to build genomic and functional related as well EZH2-silencing target.
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The reduced EZH2 expression in t-AML parallels
reduced expression observed in primary AML or pre-
leukemia, which was previously found in 78% of patients
carrying either EZH2 inactive mutation or -7/del7q invol-
ving the EZH2 locus [9]. Importantly, primary AML
patients who have lower EZH2 expression (either spliceo-
somal mutants or -7/del7q) show decreased H3K27 tri-
methylation and increased chromatin relaxation at
specific gene loci accompanied by higher transcriptional
activity [9]. Using the proposed “sequence-regulator-
network” strategy, we identified SEMA3A as a new such
gene target that loses epigenetically modified EZH2
silencing in t-AML. The identified gene locus covers a
radiation sensitivity mark revealed by genome-wide
association study [53]. However, HOXA9 was found to
be overexpressed in cases of either EZH2 mutations or
-7/del7q when compared to EZH2 wild-type [9], which
differs from the observation in our t-AML samples.
This observation indicates a commonly reduced histone
modification and alternative leukemogenic regulation on
HOXA9 between t-AML and primary AML. Both
involve EZH2 and potentially some of its DNA-binding
cofactors. We expect further validation both in vitro
and in vivo.

A literature review suggests two possible mechanisms
to explain why this epigenetically modified up-regulation
of SEMA3A contributes to pathogenesis in therapy-
related AML. The first could be a reduction of DNA
repair capacity, given that Sema3A suppresses angiogen-
esis and migration in mice models [54,55] and thus trig-
gers the sensitivity of leukemic cells to apoptosis signal
[56], possibly via a MAPKS8 regulated pathway (Figure
4C). On the other hand, a previous study found that
Sema3A counteracted chemotherapy-induced activation
of epithelial-mesenchymal transition (EMT) by improv-
ing cancer tissue oxygenation and extending the vascular
normalization [57]. Therefore, the second mechanism
could be the production of cancer stem cells (CSCs),
given that cells that undergo EMT gain stem cell-like
properties [58].

In summary, we predicted EZH2-silencing targets and
their functions in t-AML by performing a novel compu-
tational integrative analysis. The analysis incorporates
chromatin-based epigenetic regulation patterns in differ-
ent cell lines with transcriptional expression alteration
pertaining to t-AML. This integrative analysis promises
to reveal novel functional elements in a complex and
versatile regulatory system behind target gene selection
and their tissue-specific expression.

Additional material

Additional file 1: Table S1. The 21 candidate genes predicted in Figure
1D. They exhibit not only microsatellite markers associated with
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radiosensitivity but also genomic regions enriched with EZH2 and
H3K37me3 in the lymphoblastoid (GM12878) only, not the leukemic cell
line (K562). Genomic loci are based on the hg19/GRCh37 assembly.
Table S2. 52 SEMA3A dependently differentially expressed genes in t-
AML. Figure S1. Correction of batch effects. A) There are batch effects
when integrating samples from different datasets, showing by the first
two principal components derived from all genes. B) The dataset-
dependent batch effects are removed after the correction. In both
panels, one dot is one sample colored by the datasets. Figure S2.
Conditional hypergeometric distribution test. Note that the test uses the
common genes (A+B+C+D) covered by both MSigDB and an experiment
of interest. fGS: functional gene-set; DE: differentially expressed.
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