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Abstract

Background: RNA-Seq is a powerful new technology to comprehensively analyze the transcriptome of any given
cells. An important task in RNA-Seq data analysis is quantifying the expression levels of all transcripts. Although many
methods have been introduced and much progress has been made, a satisfactory solution remains elusive.

Results: In this article, we borrow the idea from the Positional Dependent Nearest Neighborhood (PDNN) model,
originally developed for analyzing microarray data, to model the non-uniformity of read distribution in RNA-seq data.
We propose a robust nonlinear regression model named PDEGEM, a Positional Dependent Energy Guided Expression
Model to estimate the abundance of transcripts. Using real data, we find that the PDEGEM fits the data better than
mseq in all three real datasets we tested. We also find that the expression measure obtained using PDEGEM showed
higher correlation with that obtained from alterative assays for quantifying gene and isoform expressions.

Conclusions: Based on these results, we believe that our PDEGEM can improve the accuracy in modeling and
estimating the transcript abundance and isoform expression in RNA-Seq data. Additionally, although the stacking
energy and positional weight of the PDEGEM are relatively related to sequencing platforms and species, they share
some common trends, which indicates that the PDEGEM could partly reflect the mechanism of DNA binding
between the template strain and the new synthesized read.
The PDEGEM model can be freely downloaded at: http://www.math.pku.edu.cn/teachers/dengmh/PDEGEM.

Introduction
The transcriptome is the set of all RNA molecules in a cell
including mRNA, rRNA, tRNA, microRNA and other
non-coding RNA. Quantifying the expression level of
mRNAs in a given cell is a fundamental problem in tran-
scriptome research. Microarray was one of the most popu-
lar technologies to quantitatively measure gene expression
in the past decade [1-4]. Despite its wide range of applica-
tions and successes, there are some key limitations in the
microarray technology, for instance, poor estimation on
low-expressed genes because of the effects of the cross-
hybridization and background signal [5-8]. In addition,
designing the array relies on the known sequence and
annotation information, therefore novel transcripts are not

able to be discovered and measured. An ultra-high-
throughput sequencing-based technology, known as RNA-
Seq [9], showed that it could overcome these difficulties
[4], [7], [10-12]. Traditionally, for RNA-Seq data, reads are
mapped to the reference genome or transcriptome or de
novo assembled together to produce a genomescale tran-
scriptional profile [13-15]. The profile can be summarized
by a sequence of “counts”, which stand for the number of
reads whose mapping starts at that position [7]. A basic
question is how to use these counts to quantify the gene
expression for each transcript. From our experience in
analyzing microarray data, we believe the key to more
accurate and effective expression quantification is to estab-
lish an appropriate statistical model. Mortazavi et al. pro-
posed to use Reads Per Kilobase per Million mapped reads
(RPKM) to represent the expression level of the transcript
[16]. The RPKM method gives full consideration to the
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transcript length and the number of mapped reads and has
been widely used due to its simplicity. This method, how-
ever, ignores the variability of read coverage within each
transcript hence introduced inaccuracy [13]. Since then,
more sophisticated models have been proposed for expres-
sion quantification in RNA-Seq. Marioni et al. proposed to
use a constant rate Poisson model [9], Risso et al. pro-
posed a method to correct GC-content bias [17] and Vard-
hanabhuti et al applied a Bayesian model [18]. Li et al
proposed a variable rates Poisson model, termed mseq, to
fit the read count data. They applied two algorithms, Pois-
son-Linear model and MART, to implement the variable
rates Poisson model. The mseq method takes into account
the read count bias due to the sequence preference, there-
fore, it could fit the real data better.
Despite the improvement in mseq, it is oversimplified to

just consider the neighborhood nucleotide sequence infor-
mation alone. They also discussed the linear effect of dinu-
cleotides in the Supplementary Material, which showed
little improvement than the single-nucleotide model.
However, we believe that a better approach is to consider
the binding interaction between two adjacent nucleotides
more precisely. An existing model that considers interac-
tion between adjacent nucleotides is the Positional Depen-
dent Nearest Neighborhood (PDNN) model [19], [20].
The PDNN model was originally designed to model the
probe-probe interaction that frequently observed in the
microarray data and the results are quite favorable. The
fundamental idea of the PDNN model lies that the binding
affinity of a probe can be approximated as a weighted sum
of its stacking energy [3], [21], [22]. Inspired by the success
of PDNN, we believed that the sequence contents may
play an important role in affecting the base-level read
counts in RNA-Seq experiments. Then we developed the
PDEGEM, a Positional Dependent Energy Guided Expres-
sion Model to take into account the sequencing prefer-
ence. The sequencing preference may lie in two aspects.
The first one is the nucleotides before the starting position
of reads, which could either affect the break point in ran-
dom broken, or influence the amplification efficiency. The
second part is the nucleotides after the starting points of
reads, which may affect the binding affinity between the
template strain and the generated strain. In this study, we
mainly focused on the transcript abundance and isoform
expression estimation, thus we only considered single-end
reads, and the model could be easily extended to handle
paired-end reads.

Methods
Positional Dependent Energy Guided Expression Model
We use a nonlinear PDNN model to characterize the
non-uniformity of the read distribution due to systema-
tic biological properties.

Let nij represent the count of reads that start at the jth
nucleotide of transcript i. In this model, we assume that
the counts from isoforms are modeled as Poisson distri-
bution, and counts in different position have different
Poisson rates. That is nij ~ P oisson(μij ), where μij is the
rate of the Poisson distribution. This is the same defini-
tion as in mseq. For a given position of a transcript, we
use the nucleotide sequences nearby to evaluate the
sequencing preference of this position. We attempt to
approximate its sequencing preference by the binding
affinity estimated from applying PDNN on the nucleotide
sequences nearby, which represents how strong a single-
stranded DNA sequence can bind to its template
sequence. According to PDNN, binding affinity is a func-
tion of free energy. And the free energy of a single-
stranded DNA sequence Eij is characterized as the sum
of weighted pair-wised stacking energies, which is defined
in Equation 1.

Eij =
N−1∑

k=1

wk∈bk ,bk+1 (1)

where wk is the positional weight factor depending on
the position of the nucleotide in the sequence. The term
bk , bk+1 is the neighborhood nucleotides that represent
A, C, G, and T. Ebk, bk+1 is the stacking energy indicating
the interaction of two adjacent nucleotides, which is the
same as the stacking energy used in the PDNN model.
N is the number of nucleotides nearby that were consid-
ered (N/2 nucleotides upstream and N/2-1 nucleotides
downstream, also including the given nucleotide itself)
to evaluate the sequencing preference.
Next, according to PDNN model, the binding affinity

of a single-stranded DNA sequence with N nucleotides
Eba is defined in Equation 2.

Eba =
1

1 + exp(
N−1∑
k=1

wk∈bk,bk+1 )
(2)

Eba indicates the sequencing preference that affects
the read count of a given nucleotide. Next, we combine
the idea of PDNN and mseq and apply a nonlinear
regression model to characterize the sequence prefer-
ence, as shown in Equation 3.

log(μij) = vi + α + log(
1

1 + exp(
N−1∑
k=1

wk∈bk,bk+1 ))
(3)

where νi = log(μi), μi is the expression of the ith tran-
script and a is a constant. μij is the rate of the Poisson
distribution and μij = wij μi, where wij is the sequencing
preference, which may depend on the surrounding
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sequence and the stacking energy between two adjacent
nucleotides. In this model, by default, N is chosen to be
40 (Details see Additional files). As a result, our model
uses 39 positional weight parameters and 16 stacking
energy parameters and 1 constant totally 39 + 16 + 1 =
56 parameters, which is highly dependent on N, to
model the sequencing preference of a given nucleotide.
After that, R2 is used to measure the fitness of the

non-linear regression model. In PDEGEM, we define R2

the same as mseq did, which is shown in Equation 4:

R2 = 1 − d
d0

(4)

where d is the deviance of the fitted model, and d0 is
the deviance of the null model. The null model of PDE-
GEM is when we assume equal positional weight and
use the initial stacking energy provided by PDNN

model, i.e., wk =
1

N − 1
, k = 1, 2, . . . ,N − 1. We apply

cross validation to estimate R2 by dividing the tran-
scripts into five parts, with the first four parts to esti-
mate the parameters, while using the left one part to
calculate the R2. The higher R2 is, the better the model
could fit the data, thus the more reasonable the model
is.

Fitting PDEGEM
To fit PDEGEM, we optimize the following objective
function (shown in Equation 5) using Newton Method
with a penalty function to obtain the positive positional
weight and stacking energy.

min
∑

i

∑

j

(log(μij) − vi − α − log(
1

1 + exp(
N−1∑
k=1

wk∈bk,bk+1 )

))
2

In order to optimize the constrained nonlinear least
squares, we add the logarithmic penalty function(shown
in Equation 6), where l ® 0 is the penalty parameter.

min
∑

i

∑

j

(log(μij) − vi − α − log(
1

1 + exp(
N−1∑
k=1

wk∈bk,bk+1 )

))
2

(6)

We perform a optimization strategy in order to get
the optimal positional weight and the stacking energy

Step 1. vi = log(
Li∑

j=1

nij
Li
) is initialized, where Li is the

length of the transcript.
Step 2. For each position on a transcript, initialize the

stacking energy ∈bk,bk+1 , k = 1, . . . ,N − 1,∈bk ,bk+1 =
1

N − 1
,

to get an stacking energy vector, where N is the number
of nucleotides surrounding the position. Then we merge

the stacking energy vector of all positions on all tran-
scripts in the training set to get a stacking energy matrix.

Initialize positional weight wk =
1

N − 1
to make each

position the same initialized weight. Then we use New-
ton Method with the penalty function to obtain the opti-
mal positional weight w = (w1, w2,..., wN −1). Next, utilize
the optimal vector of positional weight w and take the
stacking energy provided by PDNN as the initial value.
Then we use Newton Method to iterate stacking energy
∈ = (∈1, ∈2,..., ∈16) and obtain an optimal vector of stack-
ing energy E, which represents the energy weight of dinu-
cleotides AA, AC, ..., T T .
Step 3. Compute and update vi = vi = log(

Li∑

j=1

nij
Wi

) ,

Where Wi =

Li∑
j=1

nij

Li∑
j=1

exp(α + log(
1

1 + exp(
N−1∑
k=1

wk∈bk ,bk+1)

))

Step 4. Utilize the optimal vector of positional weight
and stacking energy in step 2 as the initial value of step
2. Alternate implementation of step 2 to step 3 until
both positional weight and stacking energy minimize the
objective equation. In the article, we use a threshold
(0.1) and stop the iteration if the distance between adja-
cent two iterations is less than the threshold.
Step 5. Utilize the optimized positional weight and

stacking energy to estimate the maximum likelihood
estimation of the transcript abundance, which can be
presented as in Equation 7.

μ =

L∑
j=1

nj

Li∑
j=1

exp(α + log(
1

1 + exp(
N−1∑
k=1

wk∈bk,bk+1 ))

)
(7)

Where L is the length of the transcript, and nj ( j = 1,
2,..., L) is the read count of the jth position.

Results
Datasets
In this study, four different RNA-Seq datasets (See
Table 1) are used to compare the performance of PDE-
GEM with other methods, including RPKM [16] and
mseq.
Dataset 1
This dataset consists of three sub datasets, named Wold
data [16], Burge data [23], and Gimmond data [24] for short,
which are originally utilized to validate the performance of
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the mseq method. We use these datasets to compare the
performance of PDEGEM with the Poisson-Linear model
and MART method implemented in mseq. The first two
sub datasets are sequenced by Illumina’s Solexa platform,
while the third dataset is generated with ABI’s SOLiD plat-
form. In Wold data, the length of reads is 25 bp and the
reads came from three mouse tissues: brain (w1), liver (w2)
and skeletal muscle (w3). The Burge data consists of human
tissues, mammary epithelial and breast cancer cell lines.
They are divided into three groups. Group 1 (b1) is adipose,
brain and breast. Group 2 (b2) is made of colon, heart and
liver. Lymph node, skeletal muscle and testes are in group 3
(b3). The length of the read in Burge data is 32 bp. The
Grimmond data is generated from two cell lines: embryonic
stem cells (EB, g1) and undifferentiated mouse embryonic
stem cells (ES, g2). The length of read in Grimmond data is
35 bp. In order to acquire a high qualitative dataset, some
reads are truncated into 30 bp or 25 bp.
Dataset 2
This dataset is a synthetic spike-in RNA-Seq dataset cre-
ated by the External RNA Control Consortium (ERCC)
[25], which is designed to develop a set of RNA standards
and includes 96 spike-in transcripts. The reads are gener-
ated using Illumina GAII, with 36 bp in length. We
choose this dataset (library 6) because the transcripts had
known initial concentration and they were also detected
in the 100% ERCC RNA-Seq experiment. Thus taking
the initial concentration as the golden standard, we can
apply Spearman’s rank correlation coefficients to com-
pare the concordance between the initial concentration
of transcripts and their abundance estimated using var-
ious RNA-Seq transcript abundance estimation methods.
Dataset 3
This dataset is originated from the Marioni et al. study
[9], which consists of two samples from human kidney
and two samples from liver tissues. We choose this data-
set because these samples are profiled by both RNA-Seq
and Affymetrix Microarray. The read length of Illumina

RNA-Seq samples is 36 bp. We use the transcript abun-
dance measured by microarray as the gold standard and
compared with the transcript abundance obtained from
RNA-Seq data estimated by different transcript abun-
dance estimation methods.
Dataset 4
This dataset is originated from the Mortazavi et al. study
[16], which consists of three mouse tissues: liver, skeletal
muscle and brain are sequenced on the Solexa platform.
We chose this dataset because these samples are profiled
by both RNA-Seq and Affymetrix Microarray [26]. The
read length of Solexa RNA-Seq samples is 25 bp. We used
the isoform expression measured by microarray as the
gold standard and compare with the isoform expression
estimation obtained from RNA-Seq data estimated by dif-
ferent methods.

Extracting the count data from the original reads
To evaluate the goodness-of-fit of mseq and PDEGEM,
we apply the same strategy with mseq to compare R2 of
these two models. For each of the 8 sub-dataset in Data
Set 1, we utilize the 100 highest expressed single-iso-
form transcripts selected by mseq as the training set to
train the parameters.
For Dataset 2, we first map the reads of Spikein dataset

to the reference using bowtie version 0.12.5 with the -best
option and allow at most two mismatches (-v 2 option)
[27]. For this dataset, we first remove all positions with
zero read count and we truncate the 20 bp at either begin-
ning or end of transcript.
For the RNA-Seq data in Dataset 3, we also apply bowtie

version 0.12.5 with the -best option and allow at most two
mismatches (-v 2 option) to map reads to Refseq tran-
scripts (UCSC hg19) and collect the read count of each
position of each transcript. Also, the 100 highest expressed
single-isoform transcripts are chosen as the training set.
For the RNA-Seq data in Date Set 4, we apply Seq-

Map [28] with two mismatches and map all sequencing

Table 1. Illustration of 3 datasets

Dataset Subdataset Platform read length mapping

Dataset 1 Wold w1:Brain
w2:Liver
w3:Muscle

Illumina/Solexa 25 bp Seqmap

Burge b1:Group 1
b2:Group 2
b3:Group 3

Illumina/Solexa 32 bp Seqmap

Grimmond g1:EB g2:ES SOLiD 35 bp SOC

Dataset 2 Synthetic spike-in RNA-Seq Illumina/Solexa 36 bp Bowtie

Dataset 3 Two samples from human kidney
Two samples from human liver

Illumina 36 bp Bowtie

Dataset 4 Three samples from mouse liver
Three samples from mouse Muscle
Two samples from human Brain

SOLiD 25 bp Seqmap
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reads to the mouse reference sequences (mm9, NCBI,
Build 37) and download gene annotations from the
RefSeq mouse mRNA database(mm9, NCBI, Build 37).

Goodness-of-fit of PDEGEM and mseq in Dataset 1
We apply PDEGEM to three sub-datasets in Data Set 1
and compared their R2 with that of mseq. In Data Set 1,
for each of the eight RNA-Seq samples, we select the
100 highest expressed single-isoform transcripts pro-
vided by mseq and use 5-fold cross-validation to train
PDEGEM. That is, 75 isoforms are selected as train
datasets randomly and the other which acquire the R2

value are used as test datasets. In table 2 we compared
the R2 of the Poisson-Linear model and MART model
with PDEGEM for each sub-dataset. Compared with the
other two methods, we can see in the last column that
PDEGEM achieves the highest R2 in all eight samples,
which indicates that PDEGEM can fit the RNA-Seq data
much better than mseq. We also compare our model
with Cufflinks and Genominator. The results see the
supplementary.

Trends of the stacking energy and positional weight in
Dataset 1
Figure 1 shows the stacking energy of PDEGEM in three
sub-datasets in Dataset 1. From this figure, we can see
that the stacking energies of the Illumina platform for
different species shared similar trend (w1, w2, w3 for
mouse and b1, b2, b3 for human in Figure 1), except for
dinucleotides AA and AC, while it is slightly different
for the SOLiD platform (g1 and g2 in Figure 1). The
slight difference between stacking energy of mouse sam-
ples Wold data and Grimmond data might be caused by

the different sequencing technologies. Although Illumia
Soxlea and ABI SOLiD both apply sequencing by synth-
esis strategy to generated RNA-Seq reads, Soxlea plat-
form could identify one nucleotide at each fluorescence
scanning, while SOLiD could identify two nucleotides.
Figure 2 shows the positional weight of the three sub-

datasets when using PDEGEM. From this figure, we could
see that the nucleotides in the middle portion of the 40 bp
sequence showed larger weights, which indicates the
nucleotides around the starting point of the read have lar-
ger effect on the sequencing preference. In addition, we
found that the positional weights of Wold data and Burge
data that were generated from the Illumina platform
shared the same trend (w1, w2, w3 and b1, b2, b3 in
Figure 2), which is significantly different from that of
Grimmond Data generated from the SOLiD platform (g1
and g2 in Figure 2). Based on the two figures, we could see
that although the positional weight and stacking energy of
PDEGEM are slightly related to the sequencing platforms
and species, they share some common trends and are rela-
tively conservative across species and sequencing plat-
forms. We believe that PDEGEM could partly reflect the
binding mechanism between two nucleotide sequences.
Figure 3 shows an example of the prediction of the dif-

ferent methods perform. The four pictures of Figure 3
are the counts on gene Rp19 in the Grimmond EB of
dataset1, counts fitted by the original data, PDEGEM,
Poisson linear model and MART model respectively. The
four pictures in Figure 3 indicate that PDEGEM can fit
RNA-Seq data much better than other two methods.

Comparison in synthetic RNA-Seq data
Utilizing the synthetic spike in RNA-Seq data in Data Set
2, we further evaluate the performance of RPKM, MART,
and PDEGEM. We compared the Spearman’s rank corre-
lation coefficients between the transcripts abundance
estimated by these models from the RNA-Seq data and
the “true” transcript abundance indicated by the experi-
mental transcript concentration. Presumably, the higher
the correlation is, the more accurate the method is in
estimating the transcript abundance from RNA-Seq
reads. There are 96 transcripts in the spike-in dataset, of
which six do not have reads mapped to. Thus the 90
transcripts left were used in the following analysis. We
again chose the 40 highest transcripts measured experi-
mentally as the training set to train the positional weight
and stacking energy, and these parameters are used to
measure the gene expression of the other 50 transcripts.
For the training dataset, cross-validation is used to

compare the goodness-of-fit for MART and PDEGEM.
We found that PDEGEM had higher R2 (R2 = 0.65) than
MART (R2 = 0.30). Next, we compare the Spearman’s
rank correlation coefficient of RPKM, MART, and PDE-
GEM with the true transcript abundance measured

Table 2. R2 for 3 models in 8 RNA-Seq samples in Dataset 1

R2

Dataset Sample PL1 PL*2 MART*2 MLE PDEGEM2

Wold Brain 0.51 0.65 0.70 0.68 0.73

Liver 0.50 0.64 0.70 0.66 0.70

Muscle 0.46 0.56 0.59 0.60 0.71

Burge Group 1 0.42 0.49 0.52 0.53 0.61

Group 2 0.35 0.42 0.46 0.50 0.58

Group 3 0.42 0.50 0.54 0.52 0.59

Grimmond EB 0.40 0.54 0.58 0.58 0.60

ES 0.37 0.54 0.54 0.56 0.58

R2 for 3 models in 8 RNA-Seq samples in Dataset 1. Eight different sub-
datasets are chosen to compute the R2 of these three models. We chose 40
nucleotides, 20 bp upstream, and 19 bp downstream to estimate the
sequencing preference. For each row, the number in bold indicates the
highest R2 among different methods in for the dataset.
1No Cross-Validation.
2Cross-Validation.
* PL: the Poisson-Linear model;
* EB: Embryonic stem cells;
* ES: Undifferentiated mouse embryonic stem cells.
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Figure 1 The stacking energy of PDEGEM in 8 different samples of Dataset 1. The x-axis represents the 16 dinucleotides AA, AC, ..., and TT ,
while the y-axis indicates the stacking energies of the dinucleotides. Lines with different colors indicate different datasets. w1, w2 and w3
represent Wold data, b1, b2 and b3 stand for Burge Data, while g1 and g2 indicate Grimmond data.

Figure 2 The positional weight of PDEGEM in 8 different samples of Dataset 1. We chose 40 surrounding nucleotides (20 upstream and 19
downstream) to fit the model. The x-axis is the relative position around the starting point of a read. The y-axis indicates the positional weight.
Red lines (w1, w2, w3) represent Wold data, green lines (b1, b2, and b3) for Burge Data and blue lines (g1 and g2) for Grimmond data.
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experimentally. Table 3 shows that the Spearman’s rank
correlation coefficient by PDEGEM is a little higher
than the other two methods, which again indicates that
PDEGEM could give a better fit of the RNA-Seq data
than the two methods in mseq.

Comparison in the Marioni dataset
First, four methods (RPKM, Poisson-Linear, MART, and
PDEGEM) were chosen to estimate the transcript

abundance of the four RNA-Seq datasets in Dataset 3.
After that, we used the transcript abundance measured
by the Affymetrix GeneChip as the gold standard to
assess the performance of these four methods.
For the last three models, 40 nucleotides in the neigh-

borhood of each nucleotide were used and the 100 highest
expressed single-isoform genes were used as the training
set. As shown in the last column of Table 4 PDEGEM also
achieved the highest goodness-of-fit measured by R2.

Figure 3 Fitting counts for the mouse Rp19 gene. Black vertical lines represent counts (experimental values or fitted values) along the
Grimmond EB Rp19 gene (with the UTR and a further 100 nucleotides truncated). We use the other 99 genes of the top 100 genes to train the
three models and then predict the counts for the Rp19 gene.(a) Counts of reads (true values) in the Grimmond EB data.(b) Counts of fitted reads
using mseq. (c) Counts of fitted reads using MART. (d) Counts of fitted reads using PDEGEM.
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As highly expressed transcripts often display high level
of over-dispersion as well as high spatial dependence [13],
for each sample, we chose the 8000 highest expressed
transcripts according to the microarray data. We only
looked at the transcripts appear in both RNA-Seq and
microarray data, after that we got rid of the transcripts
whose RPKM are less than 0.1, as these transcripts have
too few reads to detect the accurate abundance. Finally,
about 5000 transcripts were left to compare the perfor-
mance of these four methods. When compared to the
gene expression measured by microarray, PDEGEM again
achieved the highest Spearman’s rank correlation coeffi-
cient in all four RNA-Seq samples is shown in Table 5.
According to the results above, we have reasons to believe
that PDEGEM could provide more accurate quantification
of gene expression at transcript-level when compared with
the other three methods.

Comparison in the Mortazavi dataset
To compare the performance of PDEGEM with regard
to exon-level estimations, three methods (uniform
model, MART, PDEGEM) are chosen to estimate the
isoform-specific expressions with those data profiled by
Affymetrix Microarray given by Pan et al that studied
3126 ‘cassette-type’ alternative splicing(AS) events in 10
mouse tissues. We use a percent alternatively spliced
exon exclusion value (%Asex) as a statisitc presented by
Jiang et al [29]. We use Dataset 4 which is the same
subsets of genes in the paper by Jiang et al and utilize

the method for estimating isoform expression levels
introduced by Jiang et al to compute %ASex. The Pear-
son’s correlation coefficients(PCC) in all subset of genes
is shown in Table 6. According to the result in Table 6
PDEGEM achieved the highest PCC and we have rea-
sons to believe that our model can improve the isoform-
specific expression levels.

Discussion and Conclusion
Sequencing preference has been recognized as an impor-
tant factor in transcript abundance estimation. We believe
that the stacking energy between neighborhood nucleo-
tides can be utilized to better model sequencing prefer-
ence than in the Poisson-Linear model. Therefore, we
borrow the idea from the PDNN model that is first intro-
duced to model the binding affinity between the target
sequence and probe on the microarray. Combining the
ideas of these two models, we construct PDEGEM for ana-
lyzing the RNA-Seq data. We assume that the starting
position of a read is related to two main effects. The first
one is the effect of RNA amplification, including random
broken and insufficient amplification, which is presented
by the nearby nucleotides prior to the starting point of the
reads. The second one is the related sequencing proce-
dure, which is presented by the nucleotides after the start-
ing point of the reads. As for Illumina Solexa platform,

Table 3. Consistency between transcript abundance
estimated by different methods and gold standards in
Dataset 2

RPKM MART PDEGEM

R2 −1 0.30 0.54

SRCC2 0.8341 0.8501 0.8655

Spearman’s rank correlation coefficient of RPKM, MART, PDEGEM with the true
transcript abundance measured by transcript concentration in the experiment
[25]. We compared four different methods using a synthetic RNA-Seq dataset
with 90 isoforms. The number in bold indicates the highest R2 among three
methods for the dataset.
1RPKM has no R2.
2 Spearman’s rank correlation coefficient.

Table 4. R2 for 3 models in Dataset 3

Sample Poisson-Linear MART PDEGEM

SRX0005711 0.15 0.50 0.61

SRX0006041 0.12 0.48 0.59

SRX0006052 0.15 0.53 0.60

SRX0006062 0.13 0.52 0.59

Goodness-of-fit measured by R2 for Poisson-Linear model, MART and PDEGEM
in four RNA-Seq samples in Data Set 3. The four samples came from human
kidney and liver. For each row, the number in bold indicates the highest R2

among different methods for the dataset
1Illumina sequencing of Human liver transcripts.
2Illumina sequencing of Human kidney transcripts.

Table 5. Consistency between transcript abundance
estimated by different methods and gold standards in
Dataset 3

Sample N1 RPKM PL2 MART PDEGEM

SRX0005713 4857 0.474 0.474 0.471 0.483

SRX0006043 4880 0.460 0.458 0.460 0.477

SRX0006054 5309 0.527 0.527 0.530 0.557

SRX0006064 5293 0.442 0.411 0.452 0.471

Spearman’s rank correlation coefficient of RPKM, Poisson-Linear model, MART,
PDEGEM with the “true” gene expression measured by microarray in Dataset
3.
1 Number of transcripts used to calculate the correlation coefficients.
2 PL: the Poisson-Linear model.
3 Illumina sequencing of Human liver transcripts.
4 Illumina sequencing of Human kidney transcripts.

Table 6. Pearson’s correlation coefficients of %ASex

Tissue AS
events

PCC1 by uniform
model

PCC by
MART

PDEGEM

1 Brain 699 0.36 0.40 0.41

Liver 472 0.48 0.50 0.53

Muscle 451 0.40 0.45 0.47

2 Brain 298 0.44 0.50 0.52

Liver 228 0.60 0.60 0.62

Muscle 194 0.48 0.51 0.52

The Pearson’s correlation coefficients (PPC) of uniform model, MART, PDEGEM
with the isoform expression measured by microarray in Dataset 4.
1Pearson’s correlation coeficient

Xia et al. BMC Medical Genomics 2015, 8(Suppl 2):S14
http://www.biomedcentral.com/1755-8794/8/S2/S14

Page 8 of 10



it utilizes sequencing by synthesis procedure to produce
RNA-Seq reads. The affinity between the template strain
and the generated strain may play an important role in
generating the reads.
As for sequencing technology and species, we found

that different platforms or species generate slightly dif-
ferent positional weight and stacking energy in our
model. Similar difference has been noticed in microarray
data. For stacking energy, except for AA, AC, CC, and
GC, the other dinucleotides show the similar trend in
both Illumina and SOLiD platforms(Figure 1). The
stacking energies are slightly different between the Wold
Data and Burge Data that generated from the same
sequencing platform Illumina. This may due to the fact
that the RNA samples were extracted from different
species (mouse and human), which shows that both
sequencing platforms and species could influence the
sequencing preference through stacking energy. As for
positional weight, the results show that the nucleotides
in the middle portion of the sequence have larger effects
on the sequencing preference. Besides, the Wold data
and Burge data generated with Illumina show almost
the same trend of positional weight (Red and green lines
in Figure 2), regardless of the species. However, it’s sig-
nificantly different for Gimmond data that are generated
from the SOLiD sequencing platform (Blue lines in Fig-
ure 2). Our results shows that the sequencing platforms
may have larger effect on positional weight than species.
The same trend is shown in Dataset 2 and Dataset 3
(Details see Additional file 2). Although the parameters
in the model are slightly related to both sequencing
platforms and species, they share some common trends,
which are relatively conservative across sequencing plat-
forms and species. Thus, it nevertheless reflects that the
DNA binding mechanism can be identified between the
template strain and the new synthesized read. In this
study, we only observe that sequencing preference are
slightly related to sequencing platforms and species,
while the detailed mechanism remains to be further
explored with more refined biological experiments.
Furthermore, we also attempt to use 20, 60, 80, and 120

nucleotides to characterize the sequencing preference
(See Additional file 1 for more details). Take the RNA-
Seq data w1 in Wold Data of Dataset 1 for example, the
R2 are almost the same as that of using 40 nucleotides.
Besides, the stacking energy and positional weight are
also very similar, as shown in Supplementary Figure S1.
Therefore in order to reduce memory consumption, we
chose to use 40 nucleotides in the PDEGEM. The
detailed comparison is shown in the Supplementary
Figure S1. In addition, the positional weight and stacking
energy calculated from the spike-in RNA-Seq data gener-
ated from Illumina in Dataset 2 and four RNA-Seq sam-
ples generated with Illumina in Dataset 3 showed that

they also share the similar trend as those of Wold data
and Burge data in Data Set 1, which confirm the biologi-
cal significance of the positional weight and stacking
energy. More details could be found in Supplementary
Figure S2 and Supplementary Figure S3.
In this study, we first calculate R2 through cross-

validation and the R2 of PDEGEM increases signifi-
cantly compared with Poisson-Linear model and
MART. Also, PDEGEM is developed to estimate the
gene expression at transcript level. By comparing with
RPKM, Poisson-Linear model and MART, our method
shows higher goodness-of-fit measured by R2 with less
parameters and achieves higher Spearman’s rank corre-
lation coefficients with gene expression measured by
microarray or other experiments. We believe that the
improvement in R2 and transcript abundance estima-
tion are the result of the more refined sequencing pre-
ference model.
In this model, we use Newton Method to solve the

optimization equation. The convergence of Newton
Method is time-consuming and this method may appear
singular for particularly large amount of data. An alter-
native method that could be considered is the coordi-
nate descent method. Though our model is based on
single-end RNA-Seq protocol, paired-end RNA-Seq data
can also be analyzed with PDEGEM.
PDEGEM characterize the non-uniformity of read dis-

tribution in RNA-Seq data. Through applying the model
to RNA-Seq data generated with Illumina and SOLiD
platforms, the results show that PDEGEM is relatively
conservative to the sequencing platforms and species.
PDEGEM combines two ideas, one is Poisson linear
model which considers the sequencing preference, and
the other is the PDNN model which considers the bind-
ing affinity to predict gene expression in microarray. The
experimental evaluation of PDEGEM has illustrated that
it can achieve higher goodness-of-fit and more accurate
prediction of transcript abundance compared with other
methods, which will surely benefit the downstream inves-
tigations such as detecting differentially expressed genes
and gene set enrichment analysis.
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