Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513
http://www.biomedcentral.com/1755-8794/8/52/513

BMC
Medical Genomics

RESEARCH Open Access

SeedsGraph: an efficient assembler for next-
generation sequencing data

Chunyu Wang', Maozu Guo ', Xiaoyan Liu', Yang Liu', Quan Zou?

From The 4th Translational Bioinformatics Conference and the 8th International Conference on Systems

Biology (TBC/ISB 2014)
Qingdao, China. 24-27 October 2014

Abstract

DNA sequencing technology has been rapidly evolving, and produces a large number of short reads with a fast
rising tendency. This has led to a resurgence of research in whole genome shotgun assembly algorithms. We start
the assembly algorithm by clustering the short reads in a cloud computing framework, and the clustering process
groups fragments according to their original consensus long-sequence similarity. We condense each group of
reads to a chain of seeds, which is a kind of substring with reads aligned, and then build a graph accordingly.
Finally, we analyze the graph to find Euler paths, and assemble the reads related in the paths into contigs, and
then lay out contigs with mate-pair information for scaffolds. The result shows that our algorithm is efficient and
feasible for a large set of reads such as in next-generation sequencing technology.

Introduction

The introduction of the massively parallel next-generation
sequencing (NGS) technologies has caused a great increase
in the number of reads typically generated by experiments.
At the same time, the shorter read length from NGS and
the sheer demand for more scalable assemblers have been
an important computational challenge, and the genome
assembly continues to represent one of the most difficult
and important algorithmic problems in bioinformatics.
Software technology and algorithm implementation
become critical factors when dealing with terabytes of
data. Cloud computing as a brand new way of dealing with
an extremely large dataset offers a good chance for bioin-
formatics data processing. The ability and feasibility for
underlying applications have been discussed [1,2].

We design a graph-based method for the NGS reads
assembly problem and implement it as a software pack-
age, SeedsGraph. In the Background section, the NGS
reads assembly problem and the framework for cloud
computing are discussed. The Algorithm section presents

* Correspondence: chunyu@hit.edu.cn; maozuguo@hitedu.cn

'School of Computer Science and Technology, Harbin Institute of
Technology, No.92 West Dazhi Street, Nangang District, Harbin 150001,
China

Full list of author information is available at the end of the article

the seeds definition and the related algorithms. The
result of the experiments is presented in the Result sec-
tion. Then, finally, there is a discussion about the assem-
bly and results in Discussion and future work.

Background

Genetic information of living organisms is stored in a
chain of DNA molecules. There are four possible small
molecules (also called nucleotides or bases): adenine
(A), cytosine (C), guanine (G) and thymine (T). With
the four-letter alphabet {A, T, G, C} we can represent
the entire genetic information in strings. DNA mole-
cules are denoted as a long string from the alphabet,
duplicated and broken into fragments randomly for
sequencing, which is also called shotgun sequencing.
The whole genome shotgun (WGS) de novo assembly
problem is the reconstruction of the genetic sequence
information from a set of reads sequenced from the
fragments. The shotgun process takes reads from ran-
dom positions along a target molecule [3]. The WGS de
novo assembly refers to the reconstruction in its pure
form, without consultation to previously resolved
sequence. For NGS data, this is a specialized problem
due to the short length of reads and the large volumes
of NGS data.

© 2015 Wang et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons

(BioMVed Central

Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://

creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:chunyu@hit.edu.cn
mailto:maozuguo@hit.edu.cn
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513
http://www.biomedcentral.com/1755-8794/8/52/513

Sanger sequencing or conventional sequencing has
been fine tuned to achieve read lengths of up to 1,000
base pair and per-base accuracies as high as 99.999%,
but the amount of data produced is relatively small in
each experiment and costs are great. However, NGS
achieves much higher throughput with dramatically
lower cost, because of the much higher degree of paral-
lelism and much smaller reaction volumes. NGS has
rapidly become prevalent since 2005 in research labora-
tories among companies and institutes. More and more
NGS data are therefore produced and accumulated, and
the demand for tools and methods for processing these
data are increasing. But NGS has several fundamental
limitations, especially for the assembly problem. The
read length is remarkably short compared with Sanger
sequencing and the number is huge. For example, the
HiSeq2000 sequencer (Illumina) produces billions of 100
base pair reads with a total length of up to 600 gigabase
pairs [4]. The error rates are relatively higher, and have
a different distribution among the NGS technologies.
The WGS overcomes these limitations by oversampling
the target genome with short reads from random posi-
tions. Assembly software reconstructs the target
sequences.

Current assembly methods
The classical approaches for WGS de novo assembly
have three steps: overlap, layout and consensus (OLC).
In the first overlap step, the assembler computes all suf-
fix-prefix alignments between each pair of reads, and
builds a corresponding overlap graph. In the second lay-
out step, the reads are nailed to the proper position
based on the graph. In the last consensus step, each
position in the target sequence is determined by several
related reads. The OLC approach was typical in the
Sanger data assemblers and was optimized for large gen-
omes. There are many typical OLC software programs,
such as Newbler [5], Celera Assembler [6], Arachne [7]
and so forth. Besides these, there are string graph-based
assemblers such as SGA [8] and Readjoiner [9], which
take advantage of the FM-index and are derived from
the compressed Burrows-Wheeler transform. The bot-
tleneck of OLC methods is the computation of pairwise
suffix-prefix alignment for the overlap graph, and it is
the most time-consuming and space-consuming task.
An alternative approach is widely applied to the NGS
short reads based on the de Bruijn graph, a kind of
k-mer graph whose attributes make it attractive for vast
quantities of short reads. The de Bruijn graph does not
require the computation for all pairs of reads, but enu-
merates all k-mers for every read and joins them into a
path. The graph itself does not store individual reads or
their overlaps, and compresses redundant sequences.
There are also many typical de Bruijn graph-based

Page 2 of 9

software programs, such as Velvet [10], EULER-SR [11],
Abyss [12], and so forth. However, reducing short reads
into even shorter units compromises the ability of dis-
ambiguation of short repeats. Another disadvantage is
the loss of long-range continuity information in reads.

In this paper, we present a heuristic graph-based
greedy algorithm for the assembly of NGS short reads.
We utilize the MapReduce framework for computation
of intensive short reads overlapping work, and then
cluster them into groups. The clusters are compressed
into chains of seeds, and then a seeds graph is built
from chains by seed overlapping. Finally, contigs are
threading from the seeds graph after optimization for
repeats and sequencing errors. A main advantage of
building graphs by chains is that each chain in a cluster
represents a valid assembly of reads. We provide the
SeedsGraph package, which using the open-source
implementation of a distributed programming frame-
work MapReduce [13] called Hadoop [14]. The result
shows that SeedsGraph is efficient and feasible for NGS
data. Furthermore, SeedsGraph can use remote comput-
ing services over the Internet such as the Amazon Elas-
tic Compute Cloud [15].

MapReduce and Hadoop
MapReduce is a software framework designed and used
by Google to support parallel distributed processes of
large data-intensive applications and services [13]. Goo-
gle uses this framework internally for their services such
as Gmail, Docs, and so forth, and processes petabytes of
data all on commodity computers. This framework uses
two phases called map and reduce, which borrow from
functional programming to split data into small pieces
for processing and then merging the results. Unlike com-
mon parallel computing frameworks, MapReduce does
not need a developer to explicitly manage data distribu-
tion, interprocess communication or network access. The
framework automatically executes these functions (maps
and reduces) by a job controller in parallel over any num-
ber of processors utilizing both multiprocessors in one
node and multinodes in computers of a network cluster.
Between the map and reduce phases, there is also a shuf-
fle phase for shuffling and sorting intermediate data dis-
tributed over nodes in the network. The shuffle phase
could also be used as a temporary processing or filtering
step for intermediate results in the middle of a whole job.
As shown in Figure 1, the map function generates key-
value tuples from the input data. One record of input data
could be related to none, one or multiple key-value tuples
based on the difference of applications. For example, for
the word count problem, to compute all occurrences of a
number of words, the map function could emit all (word,
1) tuples for each word from a single line of an input
document. For larger input data, the framework could run

Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513 Page 3 of 9
http://www.biomedcentral.com/1755-8794/8/52/513
Map Shuffle Reduce
input output
‘ r
27 V2
. : 2 K3' V3
split
m
result
n’ Vn
Figure 1 MapReduce framework.

\

the map function in parallel on multiprocessors. Once
the mappers are complete, the result tuples are shuffled
by MapReduce and grouped by the keys. The result is a
large distributed hash table indexed by the keys, and
each key is related to a list of values. For the word count
problem, every world has a list of 1s as values. The
reduce function could then be any function with input of
a single key and a corresponding list of values. So for the
word count problem, the reduce function could just sum
up all 1s into a final count result. In general, the reduce
function should be commutative, since the order of the
tuples is unstable and distributed across the network.
The MapReduce framework ensures all tuples with the
same key are transferred to same computer node and
executed by the same reduce function. Each instance of
the reduce function therefore executes only dependent
tuple keys from the map function, and there can be as
many reduce functions executing in parallel as the num-
ber of keys.

In other distributed computing frameworks, the archi-
tecture is more computing intensive rather than data
that are stored in some specific data nodes. The com-
puting nodes obtain necessary data from nodes through
a high-bandwidth network. Computing nodes and data
nodes are separated by network. However, MapReduce
is designed for an extremely large dataset, far beyond
the RAM size, even local disks, and it is not feasible for
frequent network I0. Google designed a new specialized
distributed Google File System (GEFS) to efficiently sup-
port MapReduce jobs [16]. In comparison with other
distributed systems, every node in MapReduce is both
for computing and for data storage. The MapReduce
framework then actually moves the computing to the

data node on commodity computers; that is, the cluster.
GFS is designed to provide very high-bandwidth data 10
for MapReduce by replicating and partitioning files
across many physical disks. When data are transferred
into GFS, they are copied several times on nodes across
the network, and when MapReduce starts a job, it will
use local data first instead of fetching remote data.

Hadoop and the Hadoop Distributed File System
(HDEFS) are excellent open-source implementations of
Google’s MapReduce and GFS respectively in Java and
are sponsored by Amazon, Yahoo, Google, IBM, and so
forth. Application developers in Hadoop need only write
custom map and reduce functions in Java or any other
language using Hadoop Streaming technology. The fra-
mework will automatically execute them in parallel.
Hadoop and HDFS are capable of managing clusters
with thousands of nodes and petabytes of data. There
are benchmarks showing that Hadoop is capable of a
very large amount of efficient data processing.

Algorithm 1. MapReduce k-mer Group Algorithm

Input: R, the set of all reads

Output: K, the set of k-mer Group

1:procedure MAP(seq, seq id)

2: for all k-mer my in seq do // Vseq € R

3: Emit a tuple (m, Offsetinfo)

4: end for

5:end procedure

6:procedure REDUCE(my, N) // N: OffsetInfo set

7: if 1 < CountSeqs(N) < ¢ then

8: Emit a k-mer group (my,N) into K

9: end if // t: the max number of reads sharing a
k-mer

10:end procedure

Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513
http://www.biomedcentral.com/1755-8794/8/52/513

Algorithm

In the consideration of a very large number of NGS
reads, we cluster reads according to seeds, which is an
approximate substring shared by reads with some extra
information and will be defined properly in Definition 2.
But raw reads clustering is also a space-consuming and
time-consuming task, so we use the MapReduce frame-
work on it. A read cluster is denoted by a chain of
related seeds, which have all records about the reads in
it. Then a seeds graph (Definition 4) is built based on
the seeds’ overlapping relationship and paired-end infor-
mation, and the graph is used to direct the assembly.

Generating the k-mer group

We employ the MapReduce framework for the genera-
tion of k-mer groups used in read clustering, as detailed
in Algorithm 1. The map function of MapReduce scans
each part of the input sequence (that is, raw read) in R,
which is the set of all reads, and emits key-value pairs
in the form of (k-mer, Offsetinfo), where Offsetlnfo is a
tuple of (seq id, offset in seq). The seq id is the
sequence’s unique ID from the mapper’s input, and the
offset in seq is the position of the k-mer inside the
sequence. Through an iteration over the sequence, map-
pers can collect all length-k substrings (k-mers) and off-
sets (offset in seqs) (see Figure 2). The sequence is then
converted into its reverse-complement form for all

Page 4 of 9

reverse-complement k-mers. To distinguish from origi-
nal k-mers, offset in seq of reverse complements is
marked as a negative integer value. By a single run of a
map function, we can obtain all k-mers and reverse-
complement k-mers of a sequence. Since there is no
relation between each two of reads in this step, the
execution over all reads could be parallelized without
any loss of accuracy. Once all mappers are completed,
Hadoop would shuffle the key-value pairs, and group all
values with same k-mer key into a long list, the k-mer
Group, in the reduce function.

+ Definition 1 (k-mer Group): A k-mer Group is a
set of tuple (my,N), where m; is a k-mer and N is a
set of Offsetinfo, which means all sequences in N
sharing m, in a specified position.

In genome data, there are many highly repeated areas,
which are full of the same or similar sequences. If a k-
mer is one inside these regions, its huge k-mer group is
hazardous for assembly. We therefore limit the k-mer
group size with a threshold ¢, and the reduce function
will drop it automatically. The output of Algorithm 1 is
a complete valid k-mer group set, denoted as K. The
complexity of a map job for k-mer generating is in O
(nm) time and O(4*m) space, where 7 is the number of
reads and m is the length of a read.

l split
AGAAGGTG
GAAGGTGG
AAGGTGGA
l map
(AGAAGGTG— (2d1, 0))

(GAAGGTGG— (id1, 1))
(AAGGTGGA— (td1, 2))

l reduce

id1: AGAAGGTGGAGTTTGCTCCTCGGAATCTGGATCATTACT. . .

CICCICGG
TCCTCGGA
CCTCGGAA

. (TCCTOBER— (idt, 16)) .-

(CTCCTCGG— (id1, 15))

(CCTCGGAA— (2d1,17))

Figure 2 Generating the k-mer Group from read sequences with MapReduce.

(AGAAGGTG—[(id1, 0), (2d2, offset), (1ds, offset), - - -
(GAAGGTGG—[(id1, 1), (¢d2, offset), (ida, offset), - - -
(AAGGTGGA—[(2d1, 2), (ids, offset), (ids, offset), - - -

Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513
http://www.biomedcentral.com/1755-8794/8/52/513

Reads clustering

Reads clustering is the core part in this assembly package.
We use clustering to eliminate the large amount of NGS
reads, split reads into clusters, and denote the cluster as a
series of short substrings; that is, seeds. The strategy
about reads clustering detailed in Algorithm 2 is as fol-
lows: take a sequence from reads randomly as a cluster
center; find all sequences sharing a k-mer with the center;
and validate each sequence by extend k-mer to seeds.

A cluster center r, is randomly taken in line 3, and the
related sequences denoted by set T are gathered from K
by enumerating all k-mers of r. in lines 5 to 8. Firstly,
we compare all reads related to all k-mers with r.. If a
read shares a block with r. with enough length, we
could just align the read with r.. The existence of
enough length could be concluded from the k-mer
uniqueness discussed in [17]. Then, other reads are
aligned to r, by those sharing k-mer and positions.

In the next step, we extend a k-mer to an [-mer in r,,
as illustrated in Figure 3, where k </ holds, and filter
out all sequences that there are more than e mismatch
in [-mer compared with r.. A seed is created from the
[-mer and related sequences including r, information.
The length of [relies on the uniqueness of substrings of
the genome, which was discussed comprehensively in
[18] especially for large repetitive plant genomes. For
any [where 4/ exceeds twice the genome size, most
[-mers should be unique [19]. We choose [as a slightly
smaller value for the uniqueness and error corrections.

+ Definition 2 (seed): A seed is a 4 tuple (id, m; seq
list, next). The id is a unique number for all seeds,
the m; is a [-mer which is shared by the sequences
list in seq list which is copied from the k-mer group.
The next is a field for the following seeds or none,
and stores the next seed’s id and the distance which
could be a negative value if overlapping with the fol-
lowing one. If sequences have mismatch less than e,
then mismatch positions is denoted in m; as ‘n’
instead of the original ‘A’, “T’, ‘C’ or ‘G’.

Page 5 of 9

For all k-mers in r,, one will check all sequences shar-
ing k-mer, but only nonoverlapping seeds will be
emitted, as detailed in lines 11 to 22. For alignment out-
side r., we use the same strategy emitting nonoverlap-
ping seeds from other sequences next to both ends of
re, as in lines 23 to 26. Because the output seeds are
ordered along the alignment in line 7, we join the seeds
in a chain by the next field.

» Definition 3 (seeds chain): A seeds chain or sim-
ply chain is a linked list of seeds which is a repre-
sentation of a cluster centered on r, and the
alignment of related sequences.

Whereas the seeds in a chain cannot have any over-
lapping in one cluster, the distance between each two
consecutive seeds could be spaced, because of some
nonexisting k-mers filtered out by the reduce function
in Algorithm 1. When all seeds covering the alignment
in line 7 are generated, we finish a candidate cluster -
which is all sequences in the seeds. In the last step, if a
sequence only shares a single seed with others, it is not
suitable for this cluster. So we define a ration threshold
h, which is the coverage of a sequence by the cluster
chain, as in lines 27 to 32. If a sequence’s coverage is
under /4, it is removed from the cluster. Finally, the clus-
ter center on r, is complete, and has been denoted by a
chain S that is saved into the result chain set Q. We
update R by removing the sequences of S, then iterate it
over R until empty to finish the algorithm.

The clustering algorithm runs on Hadoop for HDFS
only; the jobs are controlled by a separate job controller
instead of MapReduce. Each cluster is gathered by one
task in a node of the Hadoop environment, but random
selection for the cluster center should be distinguished
among different nodes. So we use a self-defined job con-
troller to select the center sequence, then send it to a
node in Hadoop for a clustering task, as in line 3. The
task firstly gathers the temporary set T of necessary
sequences from R on HDFS, then saves it on HDFS in

Te
M.
k-mers my —
seeds =
sequences

tor).

Figure 3 Extension from k-mer m, to I-mer m; and seeds building in a cluster (the seeds outside r. are built from sequences aligned

Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513
http://www.biomedcentral.com/1755-8794/8/52/513

line 9. The job controller monitors HDFS for T, and
then selects another cluster center from R - T for
another job. So the reads clustering algorithm runs par-
allel in the Hadoop environment with the help of HDEFS.

For a given read r,, there are total (m - k) k-mers and #,,
related reads. The alignment of each read to 7, by sharing
the k-mer is in O(n,.) time, but the /-mer extension needs
O(l) and O(m) for the worst case. For the job of seeds con-
struction and cover ration, O(#,.) is calculated. So the total
is in O(In,.), and for the worst case is O(mn,,).

Seeds graph building

o Definition 4 (seeds graph): A seeds graph G is a
tuple (V,E), where V is a vertex set and E is a edge
set. The vertexes are identical with seeds generated
by clustering algorithm. The edges are the union
from edges in each of chain in Q and the suffix-pre-
fix overlapping relation calculated from all pairs of
seeds that do not belong in the same chain.

A seeds graph is essentially a /-mers overlapping
graph, where /-mers are from seeds generated by a clus-
tering algorithm, but the two vertexes of overlapping
edges are only from different clusters. The chain set Q
is already in a seeds graph structure with vertexes and
chain edges, and we only need to calculate all overlap-
ping edges and update Q with connected components.
Short cluster contigs will therefore be joined together
across tail seeds at both ends inside a cluster.

The /-mers in all seeds have duplications with errors
because of different clusters, so we firstly merge all
seeds with the same pattern for less suffix-prefix over-
lapping computation. If seeds are merged into a single
seed successfully, we use the smallest seed ID as the
new seed and update all error positions. This is done in
Algorithm 3 lines 2 to 7. The seeds merge algorithm is
trivial, but the error correction should be considered.
One simply aligns reads according to the /-mer and
merges reads into a single one, then recalculates the
mismatch position among sequences inside the /-mer
window. The merge process is also called a spectral
alignment in other assemblers such as Euler [20].

In lines 8 to 13, we initialize the graph G by adding all
vertexes and edges in Q. Then all overlapping edges are
checked by computing the suffix-prefix alignment
among all pairs of seeds in lines 14 to 18. The running
time for calculation of seeds overlapping in Algorithm 3
is O(I*). But we need to compare all pairs of seeds, so
the total running time is O(#* /%), where #, is the num-
ber of seeds.

Contigs and repeats
Using seeds instead of reads, the seeds graph construc-
tion discards long-range continuity information in reads.

Page 6 of 9

We repair this by threading the reads through the graph
with the help of pair-end information. Actually the
reads in a cluster center have already been done. Paired
ends that span a repeat provide the evidence to join one
chain that enters a repeat to another chain that exits the
repeat (Figure 4a). A seeds graph may have several paths
between nodes related to two ends of a mate pair. One
path implies a putative contig, and only one of the paths
implies a sequence whose length satisfies the pair-end
constraint as in Figure 4b.

It is not possible to simplify all parts of the graph. So
if a repeat is shorter than the cluster length or the
mate-pair insert size, it is simplified as much as possible;
and if not, it would be kept as original. In general,
branching and convergence increases graph complexity,
leading to tangles that are difficult to resolve. If a contig
has been identified, all related reads will be removed
from the graph. The remaining connected components
would be smaller while the iterations run over the
graph. Finally, contigs produced from analysis in the
graph are in mate pairs for scaffolds such as in classic
OLC assemblers.

Algorithm 2. Reads Clustering Algorithm

Input: R and K, the read set and the k-mer group set

Output: Q, the set of chains for read clusters

1:procedure READSCLUSTER(R, K)

2: while R = & do

3: Take a r. € R randomly by job control

4: T« C<«{r}

5: for all k-mer my in r, do
6: Merge sequences in i group from K into T
7 Align T to r, according to shared k-mers
8: end for
9: Save T to HDFS for next job
10: S «3; d < none
11: for all k-mer miy; in 7, do
12: Extend my to a longer [-mer my; in r,

13: forallre T - Cdo
14 if Mismatch(r, m;) < e then

15: C« CUfr}

16: end if

17: if m; and d is not overlapping then
18: d<« Create a new seed from

19: s s U{g}

20: end if

21: end for

22: end for

23: for all m; nexttor.inr € C(r = r,) do
24: d <« Create a new seed from my

25: S« Su{d}

26: end for

27: for all sequence r in C do

28: if CoverRatio(r, S) < & then

29; C« C-{r}

Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513 Page 7 of 9
http://www.biomedcentral.com/1755-8794/8/52/513
N
hY N N N
4 P4 Fd 4

Figure 4 Methods to resolve graph complexity. (a

) Split sharing in-path nodes by a mate-pair (b

Y N by,
e 7 Fa

= 0—0—0—0

) Split sharing starting and ending nodes by

a mate- pa\r

30: Remove r from seeds in S 16: Add an edge (uv) into E
31: end if 17: end if

32: end for 18: end for

33: end while
34:end procedure

Result

The presented methods for constructing the seeds graph
and the subsequent computation of contigs have been
implemented in a sequence assembler named Seeds-
Graph, which provides versions both on Hadoop clus-
ters and on a single host.

For our benchmark, we use the single host version for
comparisons. The experiments’ platform is a 64-bit
Debian Linux computer with Intel Xeon E5-2620 CPU
(15M cache, 2.00 GHz, six cores and 12 threads) and 64
GB RAM. We run SeedsGraph with maximum 24
threads at the same time if necessary. For SeedsGraph,
the parameters K = 11 and L = 20 are used.

Algorithm 3. Seeds Graph Building Algorithm

Input: Q, the chain set for read clusters

Output: G, the seeds graph

1:procedure SEEDSGRAPH(Q)

2: Sort all seeds lexicographically of each chain in Q

3: Merge seeds with the same pattern

4: for all chain a and b share consecutive seeds do

5 d < Create a new chain from 4 and b

6: Replace a,b with d in Q

7: end for
8: V « all seeds of each chain in Q; E <
9: for all chain ¢ in Q do
10: for all each two consecutive seeds v in ¢ do
11: Add an edge (4,v) into E
12: end for
13: end for
14: for all seeds u,v in V but not in one chain do
15: if Overlap(u,v) > g then

19: Output G = (V,E)

20:end procedure

We chose WGS data from four deep-coverage sequen-
cing projects, and took the dataset of Staphylococcus
aureus and Rhodobacter sphaeroides from [17]. Data for
S. aureus and R. sphaeroides could be downloaded from
the Sequence Read Archive at NCBI, accession numbers
SRX007714 and SRX016063 [21]. The data are detailed
in Table 1.

We selected another assembler, SGA [8], as a compar-
ison. All methods for experiments refer to [17], but the
parameters may be different from the same dataset. We
run SeedsGraph on a single host instead of on a cluster
for the comparisons. The resulting experimental data
are detailed in Table 2.

The parameter settings are a dilemma about longer
N50 and good coverage in SeedsGraph. Contig or scaf-
fold N50 is a weighted median statistic such that 50% of
the entire assembly is contained in contigs or scaffolds
equal to or larger than this value. If we use a more
stringent seeds setting, the resulting clustering will be
smaller and the N50 will be shorter; and otherwise there
will be lots of singleton clusters (only one read in it)
that would be discarded.

Table 1. Details of next-generation sequencing datasets
used for experiments

Species Staphylococcus Rhodobacter
aureus sphaeroides

Size (Mb) 29 46

Read length 101 101

Insert size (base 180 180

pairs)

Number of reads 1,294,101 2,050,868

Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513
http://www.biomedcentral.com/1755-8794/8/52/513

Table 2. Assembly result of next-generation sequencing
data for Staphylococcus aureus and Rhodobacter
sphaeroides

Dataset Staphylococcus Rhodobacter

aureus sphaeroides

SGA [8] SeedsGraph SGA [8] SeedsGraph
Number of contigs 274 754 3,067 7,033
N50 of contigs (kb) 24 43 27 42
Number of scaffolds 122 323 2096 4291
N50 of scaffolds (kb) 205 174 95 46
Assembly size (%) 94.2 874 97.2 86.3

Discussion and future work

In this paper we present methods and implementation
techniques for a new clustering-based, graph-conducted
assembler, named SeedsGraph, which is efficient and
takes advantage of cloud computing for the large dataset
of NGS data.

In the software package, we provide tools both for the
Hadoop version and for the single host version assem-
bler. Although the different graph-based assemblers aim
at constructing the overlapping graph, they apply differ-
ent heuristics to compute a layout from the graph; we
also use the idea of the de Bruijn graph in the seeds
graph. Our main development is about the new cluster-
ing algorithm based on k-mer sharing in both the
MapReduce framework and the single host platform. The
necessary techniques we use are related in basic compu-
ter theory about sequence processing, such as the longest
common substring and so forth. The seeds graph is
inspired from the de Bruijn graph in assembly short
reads. We provide the software package online [22]. The
Java source code for the Hadoop version and the python
source code for the single host version are both available.
Any comments and suggestions are welcome, and readers
should feel free to contact the authors.

In the future, we will expand the performance and uti-
lity spectrum of SeedsGraph on several levels. First, we
will optimize the method by further improving its run-
ning time and ability for larger genomes. Second, we
will improve the seeds structure for better fuzzy string
matching for better clustering results. Finally, additional
input and output formats will be implemented in Seeds-
Graph to provide support for a wide spectrum of
upstream and downstream software tools and program-
ming environments.

Abbreviations

GFS, Google File System; HDFS, Hadoop Distributed File System; NGS, next-
generation sequencing; OLC, overlap, layout and consensus; WGS, whole
genome shotgun.

Competing interests
The authors declare that they have no competing interests.

Page 8 of 9

Authors’ contributions

All authors had made substantial contributions to conception and design, or
analysis and interpretation of data. CW detailed the algorithms and
programs, and drafted the manuscript. MG and QZ contributed to project
design and involved in drafting the manuscript. XL and YL assisted in the
analysis and data acquisition. All authors approved the final manuscript.

Acknowledgements

Publication of this article has been funded by the following authors' funding
supports. CW is supported by the Natural Science Foundation of China
(61402132). MG is supported by the Natural Science Foundation of China
(61271346), the Specialised Research Fund for the Doctoral Program of
Higher Education of China (20112302110040) and the Fundamental Research
Funds for the Central Universities (HIT.KISTP.201418). XL is supported by the
Natural Science Foundation of China (61172098 and 91335112). QZ is
supported by the Natural Science Foundation of China (61370010).

This article has been published as part of BMC Medical Genomics Volume 8
Supplement 2, 2015: Selected articles from the 4th Translational
Bioinformatics Conference and the 8th International Conference on
Systems Biology (TBC/ISB 2014). The full contents of the supplement are
available online at http://www.biomedcentral.com/bmcmedgenomics/
supplements/8/S2.

Authors’ details

'School of Computer Science and Technology, Harbin Institute of
Technology, No.92 West Dazhi Street, Nangang District, Harbin 150001,
China. “Department of Computer Science, Xiamen University, No.422, Siming
South Road, Xiamen 361005, China.

Published: 29 May 2015

References

1. Bateman A, Wood M: Cloud computing. Bioinformatics 2009, 25:1475-1475.

2. Stein LD, others: The case for cloud computing in genome informatics.
Genome Biol 2010, 11:207-14.

3. Sanger F, Coulson AR, Barrell BG, Smith AJ, Roe BA: Cloning in single-
stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol
1980, 1432: 161-78.

4. lllumina sequencing - performance and specifications for hiseq 2000.
[http://www.illumina.com.cn/support/sequencing/sequencinginstruments/
hiseq 2000.aspx], accessed 12 May 2014.

5. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al:
Genome sequencing in microfabricated high-density picolitre reactors.
Nature 2005, 437: 376-80, doi:10.1038/nature03959.

6. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, et al: A
whole-genome assembly of drosophila. Science 2000, 287: 2196-204,
doi:10.1126/science.287.5461.2196.

7. Batzoglou S, Jaffe DB, Stanley K, J Butler, Gnerre S, Mauceli E, et al:
ARACHNE: a whole-genome shotgun assembler. Genome Res 2002,
12:177-89, doi:10.1101/gr.208902.

8. Simpson JT, Durbin R: Efficient de novo assembly of large genomes using
compressed data structures. Genome Res 2012, 22: 549-56, doi:10.1101/
gr.126953.111.

9. Gonnella G, Kurtz S: Readjoiner: a fast and memory efficient string graph-
based sequence assembler. BMC Bioinformatics 2012, 13:82-101,
doi:10.1186/1471-2105-13-82.

10. Zerbino DR, Birmney E: Velvet: algorithms for de novo short read assembly
using de bruijn graphs. Genome Res 2008, 18:821-9, doi:10.1101/
gr.074492.107.

11. Chaisson MJ, Pevzner PA: Short read fragment assembly of bacterial
genomes. Genome Res 2008, 18:324-30, doi:10.1101/gr.7088808.

12. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I: ABySS: a
parallel assembler for short read sequence data. Genome Res 2009,
19:1117-23, doi:10.1101/9r.089532.108.

13. Dean J, Ghemawat S: MapReduce: Simplified Data Processing on Large
Clusters. Commun ACM 2008, 51:107-113.

14. Apache Hadoop. [http://hadoop.apache.org], 13 May 2014.

15. Amazon Elastic Compute Cloud (Amazon EC2). [http://aws.amazon.com/
ec2/], 17 May 2014.

16. Ghemawat S, Gobioff H, Leung S-T: The Google file system. SIGOPS Oper
Syst Rev 2003, 37: 29-43.

http://www.biomedcentral.com/bmcmedgenomics/supplements/8/S2
http://www.biomedcentral.com/bmcmedgenomics/supplements/8/S2
http://www.illumina.com.cn/support/sequencing/sequencinginstruments/hiseq 2000.aspx
http://www.illumina.com.cn/support/sequencing/sequencinginstruments/hiseq 2000.aspx
http://hadoop.apache.org
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

Wang et al. BMC Medical Genomics 2015, 8(Suppl 2):513
http://www.biomedcentral.com/1755-8794/8/52/513

20.

21.

22.

SL Salzberg, AM Phillippy, A Zimin, D Puiu, T Magoc, S Koren, et a- GAGE: a
critical evaluation of genome assemblies and assembly algorithms.
Genome Res 2012, 22:557-67, doi:10.1101/gr.131383.111.

Kurtz S, Narechania A, Stein JC, Ware D: A new method to compute k-mer
frequencies and its application to annotate large repetitive plant
genomes. BMC Genomics 2008, 9:517-35, doi:10.1186/1471-2164-9-517.
Miller JR, Koren S, Sutton G: Assembly algorithms for next-generation
sequencing data. Genomics 2010, 95: 315-27, doi:10.1016/j.
ygeno.2010.03.001.

Pevzner PA, Tang H, Waterman MS: An eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci USA 2001, 98: 9748-53, doi:10.1073/
pnas.171285098.

Leinonen R, Sugawara H, Shumway M: The Sequence Read Archive.
Nucleic Acids Res 2011, 39(Database):D19-D21.

SeedsGraph assembler. [http.//nclab.hitedu.cn/~chunyu/seedsgraphl, 30
Jun 2014

doi:10.1186/1755-8794-8-52-S13

Cite this article as: Wang et al: SeedsGraph: an efficient assembler for
next-generation sequencing data. BMC Medical Genomics 2015 8(Suppl 2):
S13.

Page 9 of 9

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BioMed Central

http://nclab.hit.edu.cn/~chunyu/seedsgraph

	Abstract
	Introduction
	Background
	Current assembly methods
	MapReduce and Hadoop
	Algorithm
	Generating the k-mer group
	Reads clustering
	Seeds graph building
	Contigs and repeats

	Result
	Discussion and future work
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors’ details
	References

