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Abstract

proposed graph based features at various pyramid levels.

only 20% per class training data.

Background: Uncovering the hidden organizational characteristics and regularities among biological sequences is
the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from
nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family
exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But
conventional classification approaches mostly rely on the global features by considering only strong protein
similarity matches. This leads to significant loss of prediction accuracy.

Methods: Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of
protein families. The proposed method considers the local as well as the global features, by examining the
interactions among ‘weakly interacting proteins’ in the PPS network and by using hierarchical graph analysis via
the graph pyramid. Different underlying properties of the protein families are uncovered by operating the

Results: Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm
using graph pyramid helps to improve computational efficiency as well as protein classification accuracy.
Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1
sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences.
With each correctly classified test sequence, the fast incremental learning ability of the proposed method
further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using

Background

The life of an organism is encrypted in the sequence of
a genome, but decryption of the genetic information
depends upon functions of the proteins that it encodes.
The assignment of biological or biochemical roles to
proteins has many challenges. Knowing just amino-acid
sequence and structure of a protein does not guarantee
that we can predict everything about that protein. How-
ever these measures are a good starting point for quickly
predicting protein functions with the help of known
homology. There are plenty of proteins which have
totally unknown functions and the whole genome
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sequencing projects are major sources of these. So an
approach based on protein homology is a fast, approxi-
mate and a primary way used to tackle such a daunting
task of protein function prediction. The rationale behind
this is that two proteins with similar sequence or struc-
ture could evolve from a common ancestor and thus
have similar functions.

The homology of protein sequence is usually found by
assessing similarity between pairs of sequences. An opti-
mal algorithm based on dynamic programming like
Needleman-Wunsch [1] is computationally inefficient for
searching similar sequences in the large protein database.
So most of the existing methods use suboptimal algo-
rithms like BLAST [2] for matching a pair of sequences.
Searching for only the highest scoring match in a protein
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database is nothing but looking for the global feature in
the sequence similarity space.

Global features try to succinctly summarize the raw
data, so they are rich in semantics. They have been found
to be useful in the domains where semantic analysis of the
raw data is important for pattern recognition, like audio
event recognition [3] and video analysis [4,5]. But the
sequences of related proteins can diverge beyond the point
where their relationship becomes hard to be detected by
such a global feature based methods. Figure 1 shows the
protein classification result based on only global features.
A couple of protein families are chosen for testing from
the Cluster of Orthologous Groups of proteins (COG)
database [6] and only 20 sequences from the COG0160
family are separated for evaluation. Some sequences from
the COGO0160 also show high (BLAST [2] matching) bit
scores with the COGO0161 family, instead of with their
own protein family. So when the protein families are clo-
sely related, protein classification based only on global fea-
tures becomes difficult and erroneous.

In attempts to overcome the above limitations, various
matching methods have been developed that use the
features extracted from multiple sequence alignment
(MSA) of the protein family sequences. These methods
use sequence templates [7] and profiles of the sequences
[8] as features. They ask for accurate MSA of related
sequences with low residue identities which requires
some domain expertise. These profile based methods
use ad hoc scoring systems without associating any evo-
lutionary meaning to it [9], unlike PAM or BLOSUM
[10]. These factors put limitations over these methods
for using them for large protein databases.

Pattern recognition based only on local features could
be useful for analyzing the large amount of data in real
time like abnormal event detection from video [11].
Use of only local features is a trade-off between speed
and the accuracy. Domains like biometrics, as well as
bioinformatics, require high recognition accuracy as well
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Figure 1 Limitations of the global feature (the highest BLAST
match score). Maximum BLAST matching scores of the test
sequences from COG0160 protein family [6] with themselves and
with another COGO0161 protein family. It shows that the classification
among closely related protein families, based only on the global
feature becomes complicated.
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as reliability. So methods which fuse local and global fea-
tures have improved recognition performance [12].

MSA of a protein family reveals selective pressures for
conservation of specific residues with evolutionary func-
tional importance. Some MSA regions seem to tolerate
insertions and deletions while others tend to remain con-
served. So position-specific features from MSA are desir-
able when searching databases for homologies. Profile
HMM, a generative model used widely for protein
sequence classification, uses these position-specific fea-
tures [13]. It uses global as well as local features by con-
sidering multiple sequences at the same time. But it lacks
quick and incremental training functionality. After classi-
fication of a test sequence by profile HMM, to update the
training model, MSA need to be calculated again and
after that the new model parameters will be estimated
from it. MSA is a time consuming process and also limits
the number of sequences to be used for sequentially
updating the training model. Unlike profile HMM, in the
proposed graph based method, incremental training is
performed easily and quickly. Test sequences can be
easily added, either sequentially or all at a time, to the
original graph to produce the new trained graph. This
puts no limit on the number of test sequences to be
added for updating the training model. In fact, the more
new correct sequences added, the better the model will
become.

Methods based on similarity clustering, k-nearest neigh-
bors, phylogenetic clustering [14], gene fusion analysis
[15] look for closely interacting sequences near the query
sequence. They fail to account for interactions among the
closely interacting neighbourhood. Thus it leaves room for
further performance improvement.

Intermediate sequence search (ISS) has also been suc-
cessfully used for detecting remote homology [16]. For
the sequences whose homology cannot be established by
a direct comparison, ISS attempts to relate them through
a third weakly interacting sequence with them. Thus for
detection of remotely related protein sequences, use of
intermediate sequences has been known to increase the
predictive power significantly [17]. However, use of inter-
mediate sequences can propagate errors dramatically
when they are not of the same function. Excessive inclu-
sion of the false positives can be effectively controlled by
using graph theory. For example, Kim and Lee [18] used
biconnectedness and articulation points to control the
false positives effectively in an iterative manner. However,
the relationships among sequences become very compli-
cated as the number of sequences increases, so these
relationships should be defined at multiple levels in a sys-
tematic manner. Thus our graph pyramid approach is an
important solution for tackling above issues. The pro-
posed method tightly controls false positives by consider-
ing strong interactions (global features) as well as all
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weak interactions (local features) in the graph with a
hierarchical manner.

Protein-Protein Interaction (PPI) [19] plays a critical
role in many biological processes. Protein expresses its
functions when it interacts with the other proteins [20].
So PPI is a vital information for protein function predic-
tion. On the other hand, understanding protein functions
is critical for understanding the various biological pro-
cesses [21]. PPI is modeled as a network, with protein
sequences represent the nodes and biological protein
interactions depict the edges in the network [19]. Protein
function prediction methods based on PPI are promising
as well as producing high performance but the availability
of high throughput PPI data is an essential requirement
for them [20,21]. So we propose a graph based protein
classification method, which requires only amino-acid
protein sequences as an input data. An edge in the graph
is constructed by using the protein sequence similarity
measure instead of PPI to produce the new Protein-
Protein Similarity (PPS) network.

Motivation and contributions

Relationships among biological sequences can be effectively
represented by building a PPS network. However, in pro-
tein families, modularity, local clustering and scale-free
topology coexist [19]. Thus use of single graph for model-
ing them has not been efficient. Here we propose the graph
pyramid approach, where multiple graph features are used
at different levels for modeling protein families. Along with
this, the proposed algorithm using hierarchical voting
scheme, tries to blend important characteristics from the
PPI network and ISS methods for protein classification.
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This makes it possible to more objectively and reasonably
predict the protein functions with high accuracy.

An edge connecting a pair of nodes with the largest
weight in the PPS network represents the strongest
match and it accounts for the global feature in similarity
space. Only considering the nodes connected through the
edges having lower weights, constitutes weak local fea-
tures and with also considering interactions among
weakly interacting nodes boost up the local features. In
addition, PPS networks are analyzed hierarchically in the
form of the Graph Pyramid (GP). It helps to extract more
vital information about proteins from the network topol-
ogy and looks for stronger global and local features.
Unlike most of the existing methods, the proposed
approach also shows that ‘how the query sequence inter-
acts with each protein in the family’. PPS interaction
topology shows ‘small world network’ [19] properties like
the PPI network (see Figure 2(b)). This helps and guides
in devising important graph features (discussed in section
‘Graph structured features’).

This paper is organized as follows. In the section
‘Methods’, we present the PPS network construction
approach and its modeling via graph pyramid. The same
section also discusses the important graph topological
or graph structured features and the hierarchical protein
classification algorithm. Experimental evaluation results
of the proposed method, their comparison with existing
prediction methods and the techniques of searching for
the optimal algorithm parameters are presented in sec-
tion ‘Results’. We conclude our work with discussions
about related issues and the direction of our future
work.

Graph Pyramid of
protein class ¢
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Figure 2 The Graph Pyramid (GP). (a) Graph pyramid: a hierarchical analysis of the graph, (b) Building of the Protein-Protein similarity (PPS)
network with varying threshold, shows the formation of hubs. Here class ¢ is formed by some randomly chosen proteins from COG0160 [6],
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Methods

Similarity between sequences can be assessed by local or
global alignment score. A score is a numerical value
that describes the overall quality of an alignment. The
protein sequence classification algorithm which relies
solely on an optimal alignment score is not practical for
a large protein database. Protein sequence similarity can
be readily found by suboptimal alignment using protein-
protein BLAST [2]. Bitscore is a rescaled version of the
raw alignment score that is independent of the size of
the search space. P-value is the probability that the
match is random. For multiple testing, P-value is cor-
rected by multiplying it with size of the search space to
get the E-value. The lower the Evalue, the more signifi-
cant the score is. Thus E-values and Bit-scores carry
slightly different information. So there should be an uni-
fied measure which combines the properties of both. To
do this, the EB-score between sequences s; and s, is
defined as follows,

eb = —log(E — value(sy,s2)) x Bit-socre(ss, s2)

1
EB-score(sy,sy) = eb x H(eb), o
where H(-) is the Heaviside-step function,
1ifx>0
H(x) = { 0 otherwise. @

The performance comparison given in the section
‘Results’, shows importance of the EB-score over the
Bitscore.

Graph construction

The proposed algorithm uses the graphical modeling of
protein sequences from each protein family/class. Con-
sider the large protein database having M classes. Let
the set of class labels be given as Cp = {c1, ¢2,- -+ ,cm)-

Consider one of the protein classes, ¢ € Cy, then let s,

be the i training sequence in that class. Similarly s;" is
the new query or test sequence and its class label ¢, is
what we have to find.

Let the protein family or the class ¢ has N training
sequences (N may be different for different ¢ € Cy),
then the set of vertices for class ¢ is defined in the simi-
larity space as, V= {s{,s{,---s }. Strength of an edge
between the vertices and is given as,

. o ifi=j 5
€ij = EB-score(s; ,sfj ) otherwise ©)
These edges form a set E° = {¢] |, €} ,,- -+, e{ y}. Now

the graph of a protein class ¢ € Cy is given by G(V*, E).
This is a weighted and an undirected graph. An edge

Page 4 of 11

weight is nothing but the strength of protein sequence
similarity.

To construct the graph of each protein class, we just
need to consider interaction (EB-score) among all pro-
tein sequences within that class. Number of proteins in
a class is far smaller than that of the entire database. So
graphs of all protein classes can be easily and indepen-
dently constructed by using protein-protein BLAST
within the corresponding classes.

Graph analysis
In protein similarity graphs, modularity, local clustering
and scale-free topology [19] coexist. To explain this phe-
nomenon we need the hierarchy, so graphs are analyzed
in the hierarchical manner. At each hierarchical level,
the edges with weights lower than a certain threshold
are pruned. Now surviving edges are considered to be
weightless. So the graph structure changes along hier-
archical levels, as well as the graph becomes unweighted
and remains undirected. This hierarchical analysis helps
to extract different graph features for weakly similar hits
(sequence matches) and thus captures the complex rela-
tionship between sequence similarity and protein
function.

For any set S, consider ¢ € S, and i as an indicator
variable, and let & be the null (empty) set, & = {} then
‘set element’ is formed as

{c}ifi=1
0 otherwise.

8(c i) = { (4)

Cardinality of a set (|S]), is the number of elements
present in it. For the graph of ¢, at certain hierarchy (i.e.
at threshold ¢), the edge set is given as,

E = U 8(ei; H(ejj —1)). (5)

¢ e
ek

The corresponding graph is given as G(V*, E;). For
notation simplicity lets represent it as G(V, E, £), instead
of G(V*, E;) and note that G(V*, E°) = G(V5, E, 0).

For any sets S; and S,, define the set addition func-
tion (like a multiset sum) as,

S1 WS, ={S;US,,S1 NSy} (6)

and note that [S; WS;,| =1|S1 +S;|, thus added set
contains repetitive elements when S; NS, #0. For
S] = {Cl,Cz} and Sz = {62,63} then
S1 WS, ={c1,¢2,¢3,c2}. This operation obeys the asso-
ciative and the commutative laws like numerical addi-

example, let

tion. As defined earlier, 52" is the query sequence from

the unknown class ¢, . Now V= V* Lﬂs;", and edges
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among the vertices in the set is given by an edge set Ej.
After adding % to the original graph G(V, E°), we will

C

get the new graph G(Vg, E;).

Graph Structured Features (GSF)

Most of the real world and biological (scale-free) networks
communicate via a few highly connected nodes known as
Hubs. These hubs determine the properties of networks
[19]. In real world networks like airline route maps, the
important cities form hubs. Proteins with high degrees of
connectedness are more likely to be essential for survival
than proteins with lesser degrees [22]. Gene duplication
leads to growth and preferential attachment in biological
networks [23]. This leads to translating the proteins having
high similarity. This shows the possibility of hub formation
in the protein family graphs, G(V*, E°), in the similarity
space.

Figure 2(b) shows building of the PPS network with a
varying threshold for one of the COG [6] protein
families. We can see that as the threshold is lowered,
trivially more edges are formed but most of them are
associated with only particular nodes (hubs). Thus hubs
are getting stronger and becoming more evident in the
PPS network. We are not interested in the detailed assess-
ment of whether the network is scale-free (a power-law
degree distribution [19]) or not. But the above analysis
helps to guide us for finding proper features which take
graph structure (i.e. complex relationships among the pro-
tein sequences) into account. Also, the different protein
families have different characteristics. Thus use of a single
graph feature may not be effective. Features are selected
such that they could extract different but vital network
information.

Average Clustering coefficient (AC)

For a node n, the clustering coefficient C,, measures the
extent to which neighbors of # are also the neighbors of
each other [19]. Thus it is nothing but the density of
sub-graph induced by the neighborhood of n. Consider
the graph G(V, E) with n € V. Let N,, be the number
of neighbors of n and E, be the number of edges
between them, then the AC is given by,

1 2En
ACGVIB) = | 2. (Nn(Nn - 1))' v

neV

A clique is a maximal complete sub-graph where all
the vertices are connected. C, quantifies how close the
neighbors of a node are, to form a clique among them-
selves. It represents the potential modularity of a net-
work and C,, of the most real networks is much larger
than that of a random networks. AC distribution is
found to be effective for an identification of a modular
organization of the metabolic networks [24]. Consider
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the example shown in Figure 3(a). Node ¢ has 4 neigh-
bors (N), having 2 connected edges (E;) among them

(a to b and d to e), which forms C, = ; and then

AC=13. When s; is attached to G(V*, E°), it may

change its AC. For a given the change in AC is given as,
AAC(c, t) = AC(G(Vy, Ej, 1)) — AC(G(VS, E 1)), (8)

Rich Club coefficient (RC)

The ‘rich-club’ phenomenon refers to the tendency of
nodes with high centrality to form tightly intercon-
nected communities. Degree (d) of a node is the number
of directly connected neighbors. High degree nodes (rich
nodes) are much more likely to form tight and well
interconnected sub-graphs than low degree nodes [25].
Thus hubs are generated through ‘rich-gets-richer’
mechanism. A quantitative definition of the rich-club
phenomenon is given by the rich-club coefficient (¢).
Let Nj., be the number of vertices having degree
greater than r and E;., be the number of edges among
those vertices then,

2E s

RE(CVEL D) =000 =\ (Neer — 1)

)
For the example shown in Figure 3(a), ¢(1) = 2. In a
complex network, ¢ is a novel probe for finding topolo-
gical correlations and it yields vital information about
the underlying architecture of the network [25]. Simi-
larly as explained earlier, the change in RC is given as,
ARC(c, t,7) = RC(G(Vy, Eg 1), 1)—

(10)
RC(G(V*, E%, 1), 7).

Star Motifs (SM)

Previous analysis showed the existence of hubs in the
PPS network. Features like mean path length and degree
distribution [19], nicely quantifies hub like properties of
the network. But mean path length is computationally
very expensive for large protein database, so simple and
elegant features are needed. Hubs indicate existence of
star shaped patterns (star-motifs ). Let power (p) of SM
be the degree of the central (center of the ‘star’ pattern)
node. Figure 3(b) shows the SM with various powers.
Each node in the training graph is already assigned with
the node degree, so that the SM can be easily computed.
This simple feature answers the questions like, ‘does

the s;“ give rise to the new hubs’ and ‘what is the
increased strength of the hubs’. Let SM(., p) finds the

number of SM of power p then change in SM is given as,
ASM(c, t,p) = SM(G(Vy, E, 1), p)—

(11)
SM(G(V*, E-, 1), p).
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Figure 3 lllustrations for graph structured features. (a) Exemplar graph to explain the features average clustering coefficient (AC) and rich

club coefficient (RC); (b) star motifs SM with different powers; () lllustration to explain that the number of triangles (TR) and the SM capture
different network properties; (d) Different queries affect graph spread (graph energy GF) differently.

Triangles (TR)

In a graph, the smallest clique with three nodes is a trian-
gle. The number of triangles gives an important informa-
tion about structure of the PPS network. Let the graph G
(V*, E°) be represented by N x N adjacency matrix [E‘],

whose (i, /) entry is given as, [E°](i, j) = H(ej;), then
the number of triangles in the graph are given as,

N
TR(G(VS, E%)) = é D IEP (). (12)
i=1

Either the graph is dense or sparse, TR can be com-
puted readily within the same time as the computation
is only associated with the matrix of the same size. TR
inherently captures different network properties than
SM. Figure 3(c) illustrates this difference more elabo-
rately. Query node g interacts with the nodes a, b, ¢ and
d. So they constitute an ‘interacting neighborhood’ to
the query. TR has capability to simultaneously assess the
interactions within interacting neighborhood. After the
query interaction, one extra triangle is formed since
only the nodes b and ¢ were previously interacting.
Whereas at node a SM power has increased from 3 to
4. Formation of new triangles in a graph indicates the
fact that ‘query interacts simultaneously to the already
interacting nodes’. Newly formed number of triangles
due to query interaction ATR(c, t), are found similarly
as equation (8).

Graph Energy (GE)

The original graph structure changes when the query
interacts with it. Figure 3(d) shows two different type of
query interaction with the same graph, where an edge
length is proportional to its weight. When only ¢, inter-
acts with a graph then its spread remains almost unaf-
fected but in case of g, interaction, the spread of a graph
alters drastically. GE is defined as the sum of the absolute

values of the eigenvalues of the adjacency matrix [26],
and given as follows,

N
GE(G(V< E)) = > i (IE]).

i=1

(13)

Since GE depends only on the adjacency matrix, the
density of the graph does not affect its computation time.
The effect of query interaction on the original graph
structure is captured by change in GE (i.e. AGE(c, t)),
given similarly like equation (8). We are dealing with
graphs whose edge strength is the similarity between
connecting nodes, which is inverse of the usual edge
length definition. So we need to look for the maximum
AGE(c, t).

Algorithm

Graphs are analyzed hierarchically (as discussed in sec-
tion ‘Graph analysis’) and threshold plays an important
role in making hierarchical graph structure. If the query
can interact at the higher layer of GP (see Figure 2(a)),
then it means it is a strong interaction and it accounts
for the global feature. Because in GP as the level rises,
the threshold also increases and at every level, the graph
edges can only be formed if their strength is greater than
the given threshold. Here interactions are in the sequence
similarity space, so a strong interaction means the highest
similarity between corresponding sequences, which
occurs when both sequences match at most of the
nucleic acids (i.e. match globally). Hence strong interac-
tion accounts for the global feature and similarly weak
interactions account for local features.

Let T = {{tac} {trc} {tsm}, {trr}, {Tce}}, be a set of
sets, defining few threshold levels corresponding to each
GTF. Consider, ty¢c = {t;, t5, t3} and t; < £, < t3. Let us
consider there are only 3 protein classes i.e. |Cy| = 3.
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Figure 4 explains the hierarchical query classification
subroutine (algorithm 1) for the feature AC. Each g¢; is
analyzed first at the highest level (z3) where we look for
class ¢ € Cy, having AAC(c, t) > T4c and collect them
in Cypc C Cyy. For query g; we can not find any such
classes ¢ at t3, so we descend the GP to £, and discover
Cac = {¢2,¢c3} with threshold ¢ = #*. The secondary
threshold (T4¢) is necessary, otherwise there will be
many spurious classes i.e. false positives (FP), having
nonzero change in average clustering coefficient
(AAC() £0). *

In the subroutine given in an algorithm 1, ¢ is the
maximum threshold (also defines maximum GP level) at
which the query starts interacting with the graph of
some class. Let us represent the subroutine by abusing
the notation for simplicity and readability as,

Cac < argmax H(AAC(c, t*) — Tac).

CE(CM

(14)

Maximum value of H(-) is 1, so all the arguments
(classes c) are assigned to Cyc whenever it produces
output 1. For reducing FP, the subroutine for SM and
TR slightly changes (see algorithm 2). Here we look for
k maximally influenced classes from Cgc by the query.
Thus classes from only Cgc are assessed (voted) again
by the features SM and TR. Subroutine for GE finds the
class from Cgy U Crg for which AGE(-) is maximum.
Thus this produces a hierarchical class voting scheme
which helps to improve the classification accuracy and
to reduce the computational load.

Each GSF has an ability to extract different informa-
tion from different levels of the protein family GP. How-
ever, applying each GSF to entire GP, is computationally
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inefficient when dealing with large numbers of protein
families. In addition, it may add up the FP, when a deci-
sion is being made in the much lower GP level than the
level defined by t". To avoid these problems, the GP
based hierarchical voting scheme is necessary. And the
rational behind placing different GSF at different GP
levels, is explained in the next ‘Results’ section.

Algorithm 1 Graph pyramid search subroutine

input: sf]"; secondary threshold T4¢; primary threshold

tac = {t1,t2, -+ , tn}, where t; > t; for i > j
output: Cyc, t*
1: Cac=p0

2: for t € tyc from ¢, to t; do

3: if Cpc =0 then

4 for all classes ¢ € Cy; do

5 Iac = H (AAC(.t)~(T4c))
6: Cac = CacWé(c, Iac)

7 th=1t

8 end for

9: end if

10: end for

Results

Dataset and evaluation details

Proposed method is evaluated on entire COG database
[6]. It is the protein database of Clusters of Orthologous
Groups (COGQG). It consists of 4,873 COG (protein
families), having total 138,458 proteins from 66 different
genomes. Approximately 10% sequences from each
COG, are selected randomly, which has produced
14,086 test sequences. This procedure is repeated 5
times further to get average performance. First, each
GSF is tested independently, for various thresholds

[ﬂAC(Cli ti)’ AAC(CZI ti)! AAC(C3, tl)]

be many spurious classes (false positives (FP)) having nonzero AAC().

a - [[0,0.1,03] |  [0,0,0] {cz,¢3} ta

a2 = = [0,0,0.5] e} ts

s - = [0.1,0,0] {c:) 5

da [0.2,0.1,0]| | [0,0,0] [0,0,0] {12} ty

s |10.0.0] [0,0,0] [0,0,0] () 4
N

Search Direction

—_——

{t1 < t; <t3}

Figure 4 lllustration of the graph pyramid search subroutine. Here we elaborate the algorithm 1 using 5 different queries. For simplicity

assume Tyc = 0, tac = {t, t,, t3} and only 3 protein classes ie. |Cpq| = 3. Each query g, is analyzed first at the highest level (t3) where we look
for all classes ¢ € Cyy, having AC(, t3) > Tac and collect them in Cyc € Cyy. For g; we can not find any such classes ¢ at t3, so we

descend the GP to ¢, level and discover Cac = {c3, €3} with threshold t" = t,. This secondary threshold (.0 is necessary, otherwise there will

Cy = {c1, €2, 3}
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without using hierarchical voting scheme. Here, the
class which produces maximum change in the GSF for
a given sf,“, is selected as the output. These output
labels are produced with either correct decision (cd),
wrong decision (wd) or no decision (nd, when |c4] # 1).
Then let the performance measure be defined as,
cd
cd+wd’

Rational behind hierarchical voting

Figure 5(a) shows the plots of precision Vs threshold
for all GSF. High precision indicates low wrong deci-
sions. AC and RC produce high precision as the
threshold rises, so these GSF are appointed to work at
higher levels of GP. So at a high threshold, it is more
likely that Cyc and Cgc contain true output class.
Thus it is sufficient to apply other GSF, to the GP gen-
erated from either C4c or Cpc. On the other hand,
GE produces high precision for low thresholds. One of
the possible reasons behind this is that, the higher the
threshold, the sparser will be the graph. So eigen-
decomposition of the adjacency matrix to calculate GE
will not give any information as AGE is close to zero
for all classes. While at low threshold, the original graph
becomes dense and query also interacts with almost all
nodes in the true output class graph. Immensity in the
interaction at lower threshold, helps GE to detect the
true class easily and correctly. This forces GE to work at
lower levels of GP, with the smallest search space as
Csm U Crr. With similar arguments, SM and T R are
placed at intermediate GP levels, allowing them to look
for ¢, in Cgc. So in the algorithm 2, hierarchy as well as
input search space for GSF are organized carefully. This
helps to reduce the search space dramatically for other
GSF and thus speeds up the algorithm (Figure 6 for
speed comparison).

precision =
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Algorithm 2 Classification by hierarchical voting
training: all G(V,E) are constructed V¢ € Cy,
input: 5;“, 7,p, k, primary threshold set T, secondary
thresholds Tyc, Trc
output: ¢,
1. Cac < argmax H(AAC(c, t*) — Tac)
ceCy
9.Crc < argmaxH(ARC(c, t*, 1) — Tkc)
CECAC
. Csm < argk-max ASM(c, t*, p)
: CECRC
. Crgr < argk-max ATR(c, t*)
: CECR(;
. Cge < argk-max AGE(c, t*)
: ceCspUCTR

w

IS

: \* get the class label having the highest frequency *\
: l//q = mode (CAC (] CRC (] CSM (@] (CTR @] (CCE)
: \* resolve the indecisive case step by step *\
s if |y,| = 2 then
10: Csm < argmax ATR(c, t*)
’ ceCre
11. Cir < argmax ATR(c, t*)
: CECRC

12: 1/;5 = mode(Cgsy W Crr W Cgg)

13:  if W‘; > 2 then
14 Cq = CGE

O 0 NI O U

15: else

16: Cq = ,;
17: end if
18: else

19: ¢, = yy
20: end if

Sometimes, for the query s;", having subtle interac-
tions with many classes, it is difficult for all GSF to
come up with an unique agreement about c, . When it
happens, the threshold would have already hit the bot-
tom of its range. Thus, with earlier reasoning, the

Precision

0 0.2 04 0.6 0.8 1
Threshold

(@)

0.98
" =23 € o ———— =
0.88 /, S
c /___-———"__‘_—__.
©0.94
g // SM.p=2
8 ——SM,p=3
a
0L i) ———5SM, p=5
- p = =——RC, r=2
: RC, r=3
—_— —RC, r=5
o 0.05 0.1 0.15 0.2
Threshold

Figure 5 Performance analysis of each GSF and their parameters. (a) Performance of all the GSF at the various thresholds (GP levels); (b)
Optimal parameters search for the SM and RC. For a given particular threshold, the parameters producing high precision are selected after the
cross validation for training the model.




Sandhan et al. BMIC Medical Genomics 2015, 8(Suppl 2):S12
http://www.biomedcentral.com/1755-8794/8/52/512

No Hie 1
GP Hie 0.511

RC 0.718

AC  — 0.312

GE s 0.073

SM s 0.053

TR mm 0.04

Figure 6 Normalized testing time for different classifiers.
'GP Hie' is the proposed graph pyramid hierarchical implementation
and ‘No Hie' is the majority voting of GSF without using the

hierarchical procedure.

solution would be to rely only on GE to find ¢, , and
14™ step in the algorithm 2 does the same.

Deciding algorithmic parameters

Figure 5(b) shows the precision Vs threshold plots for
SM and RC with different parameters. This helps to
decide optimal parameters (p’, ) for them at the parti-
cular threshold. In the implementation, p = 2 for all GP
levels, while 7~ is set 3 for lower and 5 for higher GP
levels. Other thresholds are set using the validation set
by analyzing the maximum values for each GSF. And
each set in the T has the uniformly quantized numbers
from 0 to maximum GSF value.

Performance analysis
Figure 6 shows the normalized time taken by different
classifiers for testing 14,086 sequences. In Majority vot-
ing scheme, first all GSF classify each sequence from the
large pool of testing sequences, and then the voting
begins. This slows down the scheme. On the other
hand, in the proposed GP hierarchical scheme, the testing
pool is gradually shrunken down. So the subsequent GSF
have to investigate only small set of sequences, which
likely to contain the true protein class. Which in turn
speeds up the proposed algorithm along with maintaining
high accuracy.

GP based modeling of protein families provides an
extra advantage of fast incremental learning. In this
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procedure, s;" is added back to cq after its classifica-

tion. This is an instance based learning and it only
requires slight modification to the graph of protein
family c,, like replacing G(V°*, E“ ) with G(V,', E").
Experiment consists of randomly selecting various (10
to 90) percent data from each ¢ € Cy, for training pur-
pose. This procedure is repeated 5 times and the Fig-
ure 7(b) shows the average classification performance
comparison between incremental and batch learning.
For small amounts of training data, batch learning per-
forms poorly. On the other hand, incremental learning

takes advantage of each correctly classified s;“ and pro-

duces better performance even during the scarcity of
the training data.

Improvement in the classification performance can be
achieved by combining the GSF in GP and using major-
ity voting. This is shown more elaborately with ROC
curves in Figure 7(a). For all FP rates, GP (GSF combi-
nation) always produces better true positive rate than
individual GSF. In ‘mean bit score’ classification method,
bit score is used as an edge weight for constructing the
graph. The class, ¢ € C,, which produces the maximum

mean of the weights of newly formed edges by s;", is

decided as c,. The performance of this type of bit score
based methods, is poorer than EB-score based methods.
Top part of the Table 1, shows the importance of the
EB-score and the GP; and bottom part of it compares
the performance of the proposed method with various
methods. When the GSF are not used hierarchically
with the GP, they fail to extract enough information
from protein family for classification. Thus the accuracy
of “TR without GP’ is only 90%, while that of “TR with
GP hierarchy’ is 98.9%. The proposed majority voting
scheme without hierarchy (No Hie), shows better accu-
racy than the Tree-kNN based state of the art method
[27], while GP based hierarchical voting (GP Hie)
scheme produces the best accuracy. Being twice faster
than ‘No Hie’, with maintaining high performance, the

P N+ s———
g
20.99
s =T
g —e— AC
=)
= —— SM
GE
0.9
, RC
10° 10° 10° 10°

False positive rate

(@)

Figure 7 Performance evaluation and the incremental learning. (a) ROC curves for individual GSF (independently evaluated) and their
combination in GP using majority voting; (b) Performance comparison of the Incremental and the Batch learning.
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Table 1. Average number of protein sequences
misclassified (out of 14,086 testing sequences from COG
[6] database) by the different protein classification
methods

max bit-score 362.3 max EB-score 263.2
sum bit-score 587.5 sum EB-score 238.1
mean bit-score 970.0 mean EB-score 3084
T R without GP 1404 T R with GP hierarchy 150.7
KNN classifier 309.7
Highest scoring BLAST match [2] 3629
Boujenfa et al. (using ClustalW) [27] 352
Proposed majority voting of GSF (No Hie) 282
Proposed GP based hierarchical voting (GP Hie) 21.1

‘GP Hie’ method is the preferable solution for a time
consuming protein classification task.

Discussion and conclusions

As discussed initially in the background section, here we
took an approach based on protein homology for pro-
tein function prediction. According to this approach an
entire task boils down to protein classification, because
two proteins with similar sequence or structure could
evolve from a common ancestor and thus have similar
functions. So once we classify a protein to its true
family, we can easily ascertain its probable functions
from the characteristics of its family. We took this
approach because it is fast, an approximate and primary
way to tackle a daunting task of function prediction of a
large number of proteins.

This paper proposes a novel protein classification
method based on PPS network modeling using the pro-
posed EB-scores. It tries to blend important characteris-
tics from PPI network and ISS methods for protein
classification. Importance of the method is that it
exploits the topological structural information of the
PPS network, using hierarchical network analysis guided
by the graph pyramid. This helps to analyze the different
protein interactions at different pyramid levels. Thus the
necessary information for protein classification from
weak interactions in the PPS network is not suppressed
by the other strong interactions. And proposed features
extract the different network properties at various pyra-
mid levels. This makes it possible to more objectively
and reasonably predict the protein class.

The hierarchical voting algorithm helps to improve
the computational efficiency with maintaining high clas-
sification accuracy. Some of the salient features of the
proposed method are; protein sequences as the only
input requirement; fast and easy incremental learning;
can show topologically, how the query sequence interacts
with the protein family; quick training and the high per-
formance. The proposed graph based modeling, has an
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extra advantage that the relationship between protein
families can also be found by finding the corresponding
inter-graph similarities. The experimental evaluation on
COG database demonstrated the effectiveness of the pro-
posed method.

This graph pyramid approach is also promising to use in
the PPI network and various other graph based bioinfor-
matics methods. Protein characteristics like 3D structure
and presence of various domains, along with sequence
similarity measure can be used for more efficient protein
network construction. Our future work will try to address
these issues.
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