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Abstract

Identifying effective biomarkers to battle complex diseases is an important but challenging task in biomedical
research today. Molecular data of complex diseases is increasingly abundant due to the rapid advance of high
throughput technologies. However, a great gap remains in identifying the massive molecular data to phenotypic
changes, in particular, at a network level, i.e., a novel method for network biomarkers is in pressing need to
accurately classify and diagnose diseases from molecular data and shed light on the mechanisms of disease
pathogenesis. Rather than seeking differential genes at an individual-molecule level, here we propose a novel
method for identifying network biomarkers based on protein-protein interaction affinity (PPIA), which identifies the
differential interactions at a network level. Specifically, we firstly define PPIAs by estimating the concentrations of
protein complexes based on the law of mass action upon gene expression data. Then we select a small and non-
redundant group of protein-protein interactions and single proteins according to the PPIAs, that maximizes the
discerning ability of cases from controls. This method is mathematically formulated as a linear programming, which
can be efficiently solved and guarantees a globally optimal solution. Extensive results on experimental data in
breast cancer demonstrate the effectiveness and efficiency of the proposed method for identifying network
biomarkers, which not only can accurately distinguish the phenotypes but also provides significant biological
insights at a network or pathway level. In addition, our method provides a new way to integrate static protein-
protein interaction information with dynamical gene expression data.

Introduction
The rapid advance of high-throughput technologies
opens a new way for biomarker identification, which is
an important but challenging task in biomedical research.
By exploring mRNA and protein expression profiling,
many sophisticated methods have been developed to
identify biomarkers for classifying and diagnosing dis-
eases and their severities. However, most conventional
biomarker discovery methods mainly rely on expression
measurements of individual molecules with less focus on
their associations or interactions. A typical method is to

select differentially expressed genes from normal and
disease samples with gene expression profiling data as
candidate biomarkers, and then identify the gene bio-
markers by constructing an expression-based classifier
using machine learning or pattern recognition techni-
ques. In such a way, a number of biomarkers have been
successfully identified, but the methods failed to detect
effective biomarkers with a high accuracy across many
datasets. Major reasons for such diagnostic failure lie in
(1) the heterogeneous nature of complex diseases whose
expressions may vary considerably from patient to
patient [1] and (2) small sample sizes that may be inade-
quate for consistently capturing individual disease genes
[2]. Recently, an effective method, so-called network
biomarker [2], has been developed, and it can diagnose
the disease state in an accurate manner by combining
the information of a network (e.g., protein-protein
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interaction data) with gene expression measurements
[1,3]. Studies on clinical samples have shown the success
of this methodology in diagnosis of metastatic breast can-
cer by overlaying a patient’s expression profile onto the
human protein-protein interaction map [1].
Generally, it is difficult to measure the activities of pro-

tein-protein interactions in a cell. One way is to approxi-
mate their activities by using the available gene expression
data. For example, co-expression of a pair of proteins is a
simple way to assess how active a protein-protein interac-
tion is in certain conditions. The Pearson correlation
coefficient (PCC) as well as other related quantitative
criteria are widely used to measure gene co-expression
network [4,5]. By exploring network information for bio-
marker identification, recently Zhang et al. [6] defined a
vector representation in edge space based on the decom-
posed PCC to find gene pairs as edge biomarkers, which
demonstrates the ability and potential of network informa-
tion. In particular, their results show that many edge bio-
markers (i.e., protein or gene pairs) can distinguish normal
and disease samples in high accuracy but their differential
expressions are actually not significant. In other words, as
individual molecules, these genes in edge biomarkers have
no distinguishable power but their correlations can well
classify the samples with distinct phenotypes. In this work,
we take a similar method to approximate PPI activity,
which can be expressed by the law of mass action.
The biological data are usually high-dimensional with a

large number of variables but a small number of samples.
Supposing that there are 10,000 genes, the possible num-
ber of edges or molecular pairs will be 10,0002, whose
computation may suffer from the serious problem of the
“curse of dimensionality”. Thus, dimension reduction and
feature selection methods are in pressing need. Feature
selection is a key issue in statistics and machine learning.
Traditional statistical methods, such as Akaike information
criterion (AIC) and Bayesian information criterion (BIC),
penalize the number of parameters in the model, but they
need to screen all the subsets of the parameters, which is
infeasible in terms of computational complexity in high-
dimensional data. LASSO [7] uses L1 penalty in the linear
regression form and makes the estimate sparse. It only
deals with continuous response variables and sometimes
over-selects. Support vector machine trains a set of sup-
port vectors on the margin of different classes to linearly
separate the samples in feature space [8,9]. In contrast,
EllipsoidFN [10] and LPFS [11] are novel feature selection
methods based on linear programming model with fast
convergence to the optimal solution. Particularly, sophisti-
cated algorithms for linear programming allow efficient
feature selection from ultra-high dimensional data.
In this paper, we propose a novel method to estimate

the protein-protein interaction affinity (PPIA) from gene

expression data based on the law of mass action [12],
whose information is further used to identify a set of
interactions and gene-nodes as network biomarkers to
diagnose diseases [10]. We name this new method PPIA
+ ellipsoidFN. Different from the traditional gene-node
based method [10] or DEG + ellipsoidFN method, our
PPIA + ellipsoidFN method considers the network infor-
mation from protein-protein interactions in biological
processes, enhances the interpretability of the biomar-
kers, and thus can achieve accurate diagnosis on the
phenotypes of diseases. Computational results on three
breast cancer datasets demonstrate that our method can
identify a set of network biomarkers with a low redun-
dancy but high accuracy.

Method
Overview of the new network biomarker identification
method
We propose a novel method to estimate the protein-
protein interaction affinity from gene expression data
and further to identify a set of protein-protein interac-
tions and single proteins as network biomarkers for
diagnosing diseases. Firstly PPIA is approximated by the
law of mass action. Then we construct a linear program-
ming model to identify a set of PPIAs and single pro-
teins as network biomarkers, where theoretically each
class or cluster of samples (i.e., case or control samples)
is represented by an ellipsoid. This optimization model
aims to select minimal number of PPIs and proteins to
maximize the distance between different ellipsoids.
More precisely, this process can find a minimal set of
PPIs and proteins as network biomarkers, which divide
normal and disease samples or different cancer types as
distinct as possible. Figure 1 shows the workflow of the
whole PPIA + ellipsoidFN method.

Approximating the protein-protein interaction affinity by
law of mass action
In 1864, Guldberg and Waage [12] suggested that in a
reaction such as:

A + B � A′ + B′

The “chemical affinity” between A and B not only
depends on the chemical nature of the reactants, but
also depends on the amount of each reactant in a reac-
tion mixture. Thus the Law of Mass Action was first
stated as follows:
When two reactants, A and B, react together at a

given temperature in a “substitution reaction”, the affi-
nity, or chemical force between them, is proportional to
the active masses [A] and [B], each raised to a particular
power. The chemical force is assumed to be directly
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proportional to the product of the active masses of the
reactants, thus the affinity equation can be rewritten as:

affinity = α [A] [B] .

The proportionality constant was called an affinity
constant, a.
As a result we can approximate the activities of protein

complexes according to the elementary reactions and the
gene members of the protein complex. For example, pro-
tein P1 interacts with protein P2 to form a protein complex
[P1P2] and perform a biological function. In our study, we
need to assess the abundance of protein complex [P1P2]
formed by the protein-protein interaction between protein
P1 and protein P2. By the law of mass action demonstrated
above, we have

[P1P2] = α [P1] [P2] .

Let x1 and x2 represent the mRNA expression levels of
the corresponding proteins P1 and P2. After the translation
process, the concentrations [P1] and [P2] of individual

proteins P1 and P2 before various modifications and reac-
tions, are proportional to their mRNA expression levels, i.
e., [P1] ≈ x1, [P2] ≈ x2. In our computation, we assumed
that the affinity constants are the same for all the protein-
protein interactions and set it to one. Therefore, we can
use the following equation to estimate protein-protein
interaction affinity for each interaction for any pair of pro-
teins P1 and P2:

[P1P2] = x1x2.

Optimization model to identify a minimal set of protein
interactions for classifying cancers and normal samples
Given a gene expression dataset Xm×n, in which the
expression of n genes is measured for m samples and xij
denotes the expression level of gene or protein j in sam-
ple i. For a single protein-protein interaction, we can
approximate the protein-protein interaction affinity by
the law of mass action. As a result, a protein-protein
interaction affinity matrix can be derived as Am×q, in

Figure 1 The workflow for PPIA + ellipsoidFN method. (A1) Gene expression data for cancer (rows are genes and columns are samples with
multiple different types) and human protein-protein interaction network. (A2) Combining gene expression data with human PPI network by
product approximation, where each protein-protein interaction affinity Ei can be computed based on the law of mass action. The rows are
edges of PPI or gene nodes and the columns are samples. (A3) By the PPIA+ellipsoidFN method, different cancer types or normal and disease
case can be represented by different ellipsoids, and the distances among these ellipsoids are maximized. (A4) PPIA network biomarkers are
identified by the PPIA+ellipsoidFN method to classify different phenotypes.
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which the affinity of q protein-protein interactions is
calculated for m samples. aij = xiuxiv denotes the affinity
level of protein-protein interaction j (between proteins u
and v) in sample i. We set wi, i = 1,..., q, denoting the
weight for each protein-protein interaction to be
selected as an edge biomarker. Similarly, wi, i = q + 1,...,
q + n are weights for each gene to be selected as node
biomarker. These two part of biomarkers are combined
to form the network biomarker set. Supposing in total
that there are c classes of samples, the formulation of
our method can be described as follows:

min
q∑

i=1

wi + λ

q+n∑

i=q+1

wi + α

c∑

i=1

(zi1 − zi2) + C
m∑

i=1

c∑

j=1

ξij (1)

Subject to

q∑

i=1

wi(aji − aki )
2
+

q+n∑

i=q+1

wi(xji − xki )
2 ≤ zk1 + ξjk for j ∈ Ik, k ∈ {1 · · · c} (2)

q∑

i=1

wi(aji − aki )
2
+

q+n∑

i=q+1

wi(xji − xki )
2 ≥ zk2 − ξjk for j /∈ Ik, k ∈ {1 · · · c} (3)

0 ≤ zk1 ≤ zk2 for k ∈ {1 · · · c} (4)

0 ≤ wi ≤ 1 for i ∈ {1 · · · q + n} (5)

ξij ≥ 0 for i ∈ {1 · · ·m} and j ∈ {1 · · · c} (6)

Where aki =
∑

j∈Ik xjuxjv/mk is the average/median

affinity level of protein-protein interaction i (between
proteins u and v) in class k for all samples. Ik is the set
of samples belonging to class k with total number mk.

Similarly xki denotes the average/median expression

level of gene i in class k for all samples. zk1 and zk2 are

variables defining the inner and outer radius of the ellip-
soid representing class k. ξij are slack variables to toler-
ate the data errors. Equation (1) is the objective
function for the optimization problem, which consists of

three terms.
q∑

i=1

wi denotes the weight summation of

selected protein-protein interactions. By minimizing it,
we aim to select the smallest number of protein-protein
interactions as biomarkers to enhance the interpretabil-
ity. In computational experiments we set 10-4 as a
threshold. The weight larger than the threshold for each
protein-protein interaction is selected as a network bio-

marker. The second term
c∑

i=1

(zi1 − zi2) is minimized to

enlarge the difference of inner and outer radius of ellip-
soid for clear separation of each class. The third term

m∑

i=1

c∑

j=1

ξij denotes the total classification error for all

the samples, which is minimized to achieve high classifi-
cation accuracy. Here l, a, and C are three parameters
introduced to balance the above three goals and unify
them into a single objective function. In computational
experiments we assume edges and nodes (PPIs and sin-
gle proteins) have the same importance, so we introduce
the square of the expression value of each gene, com-
parable to the product-form approximation of PPIA, to
substitute the original gene expression level. Then one
parameter l can be set to one. We can reduce the num-
ber of the parameters in this simple way. The remaining
two parameters a and C are determined by grid search
with the optimal predicting accuracy. For a we tested
0.01, 0.02, 0.1, 0.5, 1, 5, 10 and for C we tried 0.1, 1, 10,
100 and 1,000. Equation (2) implies the assumption (1),
i.e., samples from the same cancer type are enclosed by
one ellipsoid, which minimizes the distance of a sample
from its class center. Equation (3) implies the assump-
tion (2), i.e., every sample from the other cancer locates
outside of the ellipsoid representing the current cancer.
The divergence of one cancer sample from another or
normal samples is measured by the weighted sum of the
divergence of protein-protein interaction affinities and
proteins such that heterogeneity is modeled. The goal is
to identify a minimal set of protein-protein interactions
that maximize the distances between ellipsoids. We used
the quadratic function in constraints (2) and (3). Other
nonnegative functional forms, e.g., the absolute values,
can also be applied in a similar way.

Datasets and evaluation scores
The gene expression datasets for evaluation include
NCBI GEO database with accession number GSE10797
[13], GSE7904 [14], and GSE18229 [15]. The former
two datasets have normal and disease cases, and the lat-
ter has five subtypes of breast cancer. Also the human
protein-protein (PPI) interaction data was downloaded
from HPRD database. This dataset consists of 39,240
protein-protein interactions. After deleting interactions
with missing values and self-loops, 36,888 interactions
left.
We compared our method with node-based ellip-

soidFN [10] and t-test in accuracy, redundancy score,
and biological functions for both two-class case and
multiple-class case. The scores we used to evaluate the
performance of these three methods are predicting accu-
racy and redundancy score. Predicting accuracy is com-
puted based on leave-one-out or 10 fold cross-validation
using biomarkers identified in each method. We can
compute Pearson correlation coefficients for pairwise
proteins, and the redundancy score for a set of proteins
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is defined as the mean PCC’ for every pair of them in
the set, where PCC’ is absolute value of PCC. Given a
protein set {p1, p2, ..., pn }, the redundancy score is
defined as follows,

redundancy score =

∑
i�=j

∣∣cor(pi, pj)
∣∣

N
, N =

n (n − 1)

2
.

Where cor(pi, pj) denotes the Pearson correlation coef-
ficients of proteins pi and pj.

Results
Comparison on breast cancer datasets GSE10797 and
GSE7904 for a two-class case
There are totally 22,277 probes and 66 samples including
10 normal samples (5 normal stromal samples and 5 nor-
mal epithelial samples) and 56 disease ones (28 stromal
samples of breast cancer and 28 epithelial samples of
breast cancer) in the breast cancer dataset GSE10797.
Genes with missing values and with low information were
filtered out from the raw data. Here low information
means the entropy of genes expression distribution is
smaller than 1.5. After these procedures, we got a gene set
with 2,325 genes. Then we mapped the probes to human
PPI network and 5,458 gene pairs were obtained. Based on
our PPIA + ellipsoidFN optimization model and Random
Forest classifier (we use the MATLAB toolbox with ver-
sion 0.02 and license GPLv2), 3 genes and 6 interactions
totally including 14 genes (Supplementary Data Set 1)
were identified with leave-one-out cross-validation classifi-
cation accuracy 96.97% (64/66), while DEG + ellipsoidFN
method got 22 genes (Supplementary Data Set 2) with
classification accuracy 93.94% (62/66). The overlap of
these two sets of biomarkers contains 4 genes. Figure 2
demonstrates the biomarkers identified by PPIA + ellip-
soidFN and DEG + ellipsoidFN for the breast cancer data
GSE10797. The PPIA + ellipsoidFN method got higher
accuracy than DEG + ellipsoidFN. Since we simulta-
neously selected nodes and edges, the better performance
of classification results from the network information
added to the original gene expression data. Clearly, the
protein-protein interaction biomarkers identified by our
method include fewer genes, and those interactions also
have clear biological functions related to pathways. The
mean redundancy score of PPIA + ellipsoidFN method is
0.1839 which is lower than that of DEG + ellipsoidFN
0.2090. This result demonstrates the non-redundant prop-
erty of the network biomarkers including genes and PPIs.
Table 1 shows the detailed information for comparison.
Also it is important to note that when we reduce the

total number of genes from 2,325 (including 5,484 PPIs)
to 935 (containing 1,527 PPIs) by entropy distribution,
our PPIA + ellipsoidFN method gained a predicting
accuracy 93.94% compared to that of DEG + ellipsoidFN

84.85%. This result shows when fewer genes and PPIs
are used for initial selection, network biomarkers are
robust and superior to traditional single molecules. One
reason is that strictly selected genes reduce noise of the
data set. Generally, in a molecular network, genes work
as a system and interact with each other to achieve cer-
tain functions.
In order to compare the performance of t-test and

PPIA + ellipsoidFN in a fair way, we selected top 50 net-
work biomarkers including both PPIs and proteins and
compared their redundancy scores. PPIA + ellipsoidFN
got a redundancy score 0.2144 versus 0.2715 of t-test,
and the number of the intersection of these two biomar-
ker sets is 13. These results show that our PPIA + ellip-
soidFN method can identify a set of heterogeneous
network biomarkers which are considerably different
from the widely used t-test. Comparisons on t-test and
PPIA + ellipsoidFN are demonstrated in Table 1.
In order to strengthen the advantage of our method, we

take another data set GSE7904 for further evaluation.
This breast cancer data contains totally 54,675 probes
and 62 samples, including 19 normal samples and 43 dis-
ease ones. After processing the data with the method
above, 516 genes including 682 PPIs left. The leave-one-
out cross-validation classification accuracy is 98.39%
(61/62) for both PPIA + ellipsoidFN and DEG + ellip-
soidFN methods. Also 2 genes and 9 interactions con-
taining 19 genes (Supplementary Dataset 3) were selected
as network biomarkers with the redundancy score
0.2968, while 18 genes (Supplementary Dataset 4) were
identified by DEG + ellipsoidFN method with the redun-
dancy score 0.3698. Both biomarker sets share 4 genes in
common. This computational experiment shows that the
two methods achieve the same classifying accuracy but
network biomarkers reduce the redundancy score of the
biomarker set. The comparison results are presented in
Table 1. The performance of t-test and PPIA + ellip-
soidFN were compared in a similar way (choose top 50
PPIs and proteins for comparison), for detailed results
please refer to Table 1.

Comparison on datasets GSE18229 and GSE10797 for
multiple-class case
Dataset GSE18229 contains 337 samples and 22,575
probes in total. Filtering the samples without subtype
label and normal ones, we got 310 tumor samples
including 73 basal-like, 37 claudin, 39 Her2, 99 luminal
A, and 62 luminal B. The procedures of pre-preproces-
sing data are similar to those above in two-class case.
Experimental results show that the predicting accuracy
is 80% for DEG + ellipsoidFN and 79.03% for PPIA +
ellipsoidFN method. Similarly the redundancy score is
0.1523 out of 170 genes (in Supplementary Dataset 6)
for DEG + ellipsoidFN, and 0.1652 out of 90 genes and
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Figure 2 Biomarkers identified by PPIA + ellipsoidFN and DEG + ellipsoidFN for the breast cancer data GSE10797. Network biomarkers
identified by PPIA + ellipsoidFN contain 3 proteins and 6 protein-protein interactions including 14 genes, while DEG + ellipsoidFN identified 22
genes. 4 genes are in common for the two methods.

Table 1. Performance comparison among various methods.

A

Data sets Method Predicting accuracy Redundancyscore Number of genes

Two-class case GSE10797 DEG+ellipsoidFN 93.94% (62/66) 0.2090 22

PPIA+ellipsoidFN 96.97% (64/66) 0.1839 14

GSE7904 DEG+ellipsoidFN 98.39% (61/62) 0.3698 18

PPIA+ellipsoidFN 98.39% (61/62) 0.2968 19

Multiple class GSE18229 DEG+ellipsoidFN 80.00% (248/310) 0.1532 170

PPIA+ellipsoidFN 79.03% (245/310) 0.1652 135

GSE10797 DEG+ellipsoidFN 78.79% (52/66) 0.1663 161

PPIA+ellipsoidFN 83.33% (55/66) 0.2150 56

B

Data sets Method Redundancy score Number of common genes

Two-class case GSE10797 t-test 0.2715 13

PPIA 0.2144

GSE7904 t-test 0.3077 27

PPIA 0.2623

Multiple class GSE18229 F-test 0.3031 15

PPIA 0.1693

GSE10797 F-test 0.3280 11

PPIA 0.2209

(A) Comparing PPIA + ellipsoidFN method with DEG + ellipsoidFN in predicting accuracy, redundancy score, and the number of genes identified. (B) Comparisons
on PPIA + ellipsoidFN and t-test for two-class case and PPIA + ellipsoidFN versus F-test for multiple-class case based on 50 top PPIs and proteins.
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38 interactions which contains 135 genes (in Supple-
mentary Dataset 5) for PPIA + ellipsoidFN method. The
overlap of these two sets of biomarkers contains 94
genes. This result illustrates that the predicting accuracy
of PPIA + ellipsoidFN is slightly lower than that of DEG
+ ellipsoidFN. The result of the redundancy score could
arise from the fact that interacting proteins are inclined
to be co-expressed, which is different from gene-node
biomarkers. These comparisons could also be checked
in Table 1.
We also introduce dataset GSE10797 for multiple-

class case. PPIA + ellipsoidFN method identifies 12
genes and 23 PPIs including 55 genes (Supplementary
Dataset 7) as network biomarker with the redundancy
score 0.2150 and the classifying accuracy is 83.33%
(55/66). DEG + ellipsoidFN method achieves the classi-
fying accuracy 78.79% (52/66) and identifies 161 genes
(Supplementary Dataset 8) as node marker with the
redundancy score 0.1663. The intersection of the two
biomarker sets contains 21 genes.
For data set GSE18229 PPIA + ellipsoidFN method

exploiting 50 top PPIs and proteins share 15 proteins in
common with F-test, and the redundancy scores are
0.3031 for F-test and 0.1693 for PPIA + ellipsoidFN. For
data set GSE10797 with four-class situation, PPIA +
ellipsoidFN method shares 11 PPIs and proteins in com-
mons with F-test, and the redundancy scores are 0.2209
for PPIA + ellipsoidFN method versus 0.3280 for F-test.
The results are shown in Table 1 and demonstrate the
heterogeneous property of biomarkers identified by the
PPIA + ellipsoidFN method.

PPI biomarkers identified by PPIA + ellipsoidFN method
for two breast cancer data set
We obtained 9 PPIAs to optimally classify the normal and
breast cancer samples with PPIA + ellipsoidFN on data set
GSE10797 for two-class situation. These genes and pairs
are PSMD11, ELK4, EVL, SPEN-DLX5, CREBBP-KPNA2,
BGN-COL1A2, SMARCD3-JUN, IRS2-PIK3CD, and
SOX10-JUN. In total, 14 genes are involved in those inter-
actions. Evidence from a literature search implies that
some of the node and interaction biomarkers above are
involved in breast cancer. Lower EVL expression corre-
lates with high invasiveness and poor patient outcome in
human breast cancer [16], and the expression of the EVL
protein is significantly expressed in breast cancer-derived
MCF7 cells [17]. Moreover, PSMD11 was over-expressed
in breast cancer tissue compared to adjacent normal tissue
[18]. SOX10, MITF, and JUN were significantly regulated
in melanomas in comparison with cancer [19]. BGN,
COL1A1, COL1A2, MMP9, CD44, FN1, TGFBI, PXN,
SPARC, and VWF were associated with tumor metastasis
and formed a highly interactive network with the first four
molecules as hubs [20]. Exploiting DAVID functional

annotation tool [21,22] and KEGG pathway analysis [23],
the 14 genes are functionally enriched in several pathways
and biological process with statistical significance. Among
them, HDAC4-mediated deacetylation of the SMAD4 pro-
moter may lead to 5-FU resistance in breast cancer cells
[24]. Five significant pathways including focal adhesion are
discovered in breast cancer metastasis [25]. The compari-
son on KEGG pathway enrichment of PPIA + ellipsoidFN
and DEG + ellipsoidFN methods based on p-value is
shown in Figure 3, which demonstrates that our PPIA +
ellipsoidFN method tends to identify biomarkers which
are more enriched to functional pathways. This result
arises from the fact that network biomarkers identified by
our method include more interaction information rather
than the single node selection method. Moreover, Path-
ways obtained by KEGG pathway search and functional
analysis from DAVID for breast cancer data GSE10797 are
listed in Table 2. This table also shows the corresponding
result of DEG + ellipsoidFN method. From the table, we
can find that biomarkers identified by both methods are
enriched to Focal adhesion and Pathways in cancer, which
are two pathways greatly related to breast cancer.
2 genes and 9 protein-protein interactions including

19 genes were identified as network biomarkers with our
PPIA + ellipsoidFN method on GSE7904 data set. We stu-
died their relationships with breast cancer by applying the
DAVID functional annotation tool. This set of genes
enriches phosphoprotein with p-value 1.2E-5. From a
literature search, there is evidence that some phosphopro-
teins have the potential to qualify as phosphopeptide plasma
biomarker candidates for the more aggressive basal and also
the luminal-type breast cancers [26]. Tumors of the Triple
negative breast cancer (TNBC) subtype showed high
deregulation of many proteins and phosphoproteins [27].
Moreover, for dataset GSE10797 in a four-class case, we

also found some evidence with the help of KEGG pathway
search, we found that several pathways are statistically sig-
nificant, e.g., hsadd05200 Pathways in cancer, hsa04012
ErbB signaling pathway and hsadd04510 Focal adhesion
pathway. ErbB-2 is a target for cancer-initiating cells in
breast and other cancers [28]. Amplification and subse-
quent overexpression of the HER2 encoding oncogene
results in unregulated cell proliferation in HER2-positive
breast cancer [29]. All the evidence above demonstrates
that the network biomarkers identified by our PPIA +
ellpsoidFN method have efficiency and comprehensibility
from a biological perspective.

Comparison with another approximation method for
protein-protein interaction
In this paper we make an estimation of protein-protein
interaction affinity derived from the law of mass action,
i.e., aij = xiu xiv There is another way to measure the co-
expression pattern of the edges, which is defined by the
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Figure 3 Comparison on pathways enriched by biomarkers identified from PPIA + ellipsoidFN and DEG + ellipsoidFN method. For two
biomarker sets identified by the two methods respectively, we used KEGG pathway enrichment search to find several pathways according to
their p-values. Then we sort these p-values in ascending order and make a comparison between the two methods on dataset GSE10797 for
both two-class and four-class cases. X-axis denotes pathways, while y-axis denotes the p-value of each corresponding pathway. For example, the
blue line in the figure on the top shows there are five pathways in total enriched by the node biomarkers whose p-value is lower than 0.1. The
small number of pathways that are significantly enriched may result from the fact that there are few genes in the biomarker set and their non-
redundant property. From the figure we can easily see that network biomarkers identified by PPIA + ellipsoidFN method tends to enriched to
more pathways with lower p-value.

Table 2. KEGG pathway and DAVID functional analysis results for PPIA + ellipsoidFN method and DEG + ellipsoidFN
method on data set GSE10797 for two class case.

PPIA + ellipsoidFN DEG + ellipsoidFN

KEGG pathways Renal cell carcinoma
Neurotrophin signaling pathway
Focal adhesion
Aldosterone-regulated sodium reabsorption
Pathways in cancer

Focal adhesion
Pathways in cancer
Small cell lung cancer
ECM-receptor interaction
Ribosome

DAVID functional
analysis

GOTERM_MF_FAT transcription factor binding
GOTERM_MF_FAT transcription cofactor activity RT
GOTERM_MF_FAT SMAD binding
GOTERM_BP_FAT positive regulation of macromolecule
metabolic process

GOTERM_BP_FAT peptide cross-linking
GOTERM_CC_FAT cytosol
SP_PIR_KEYWORDS phosphoprotein
UP_SEQ_FEATURE cross-link:Isoglutamyl lysine isopeptide
(Gln-Lys)
GOTERM_MF_FAT structural molecule activity

The top 5 terms are listed and ranked by their p-values.
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absolute value of the difference between the two pro-
teins, i.e., aij = |xiu - xiv|. We compared the two meth-
ods by their classification accuracy (10-fold cross-
validation with Random Forest classifier). For two-class
case, the differential form gives out the predicting accu-
racy 93.94% (62/66), while the product-form gains 96.97%
(64/66) on dataset GSE10797. And for dataset GSE7904
the two methods both achieve the same accuracy of
98.39%. For multi-class case, the differential form achieves
76.45% versus 79.03% for the product-form on data set
GSE18229. And on data set GSE10797 for four-class case,
the differential form gives 75.76%, while the product-form
gains 83.33%. These results show that our PPIA estimation
derived from the law of mass action performs better than
the differential form from classification view.

Comparison with existing edge biomarker selection
method
In this study we propose a linear programming based opti-
mization model to find the optimal set of protein-protein
interaction affinities which are measured by the product of
the gene expression. The physical meaning of PPIA is
clear based on the law of mass action. Then, the product
of the protein pairs in terms of concentration is the
approximation for the activity of protein-protein interac-
tion in the cell, which is a similar measure as the correla-
tion based measure. In this paper, we also compared the
performance of product approximation with the measure
of EdgeMarker [6] (defined by the decomposition of PCC)
with Naïve Bayesian classifier by predicting accuracy in
our optimization model. Computational result shows that
the decomposed PCC used in EdgeMarker got 84.85% cor-
rect compared to 93.94% of product approximation when
running on the breast cancer data GSE10797, and 42.6%
correct of the decomposed PCC compared to 70.65% of
product approximation when running on the breast cancer
data GSE18229. These results can further illustrate the
advantages and efficiency of our PPIA-based method.

The importance of dimension reduction in our method
If we don’t use the ellipsoidFN method to reduce the
dimension of the data, the classification accuracy will be
much lower. Now we only apply the Random Forest clas-
sifier to make classification and prediction. For two-class
case on data set GSE10797, random Forest could only
achieve accuracy 84.89% accuracy, and on data set
GSE18229 the accuracy is 63.17%. Moreover, the pro-
gram needs much longer running time. This comparison
could demonstrate the efficiency of our dimension reduc-
tion model ellipsoidFN.

Discussions
The complexity of cancer pathogenesis makes it difficult
to identify a set of effective and stable biomarkers for

the diagnosis of complex diseases. In this study, we
incorporate PPI with gene expression data to battle can-
cer heterogeneity. Because PPIs bring the topological
information of a network, our method has clear advan-
tages over the node based feature selection method.
Generally, our method tends to select pathways or sub-
networks, which have clear and enriched biological
meanings. Our main contribution in this work is to inte-
grate PPI with expression data in a novel way by defining
PPIA, which has clearer biochemical meaning. Moreover,
ellipsoidFN, an efficient dimension reduction method to
select a representative subset of PPIA, is utilized to per-
form the feature selection from high dimensional data.
With the increasing biological interpretability, the redun-
dancy score of biomarkers identified by our method
increases in some cases and the predicting accuracy is
comparable to DEG + ellipsoidFN. Those results also
demonstrate the tradeoff between the biological interpre-
tation and machine learning accuracy.
A network is a set of edges or interactions. Those inter-

actions are context-specific and dynamic in nature.
Under different conditions, different interactions are
selectively activated or deactivated. Importantly, network
rewiring is a general principle of biological systems
regarding disease progression or therapeutic response in
epigenomic era. In this paper, we propose a new method
to combine PPIA and ellipsoidFN to detect network bio-
markers from pathway perspective rather than single
node based identification methods. We stress “which
interactions are differentially connected” instead of
“which genes are differentially expressed”.
As we mentioned, this edge-focused study provides a

general data integration framework for static network
information and dynamic expression data. We note that
there are different ways to consider edge information.
Liu et al. [30] integrated the information of differential
expression status of gene and co-expressed gene pair to
form a scoring scheme based on Fisher’s method. This
scoring scheme helps to construct a weighted PPI net-
work which was used to detect differentially activated
pathways [31] and identify dysfunctional crosstalk of
pathways in different regions of Alzheimer’s disease
brain [30]. Recently, Sun et al. [32] provided a novel
way to combine the two data sources. They identified
differential and non-differential interactions, having no
significant change on edge strength but the linked two
genes are both differentially expressed, to study type 2
diabetes. The methods above to combine the gene
expression profiling and PPI network data could be uti-
lized to construct various types of differential network.
And the ellipsoidFN model can be built on these net-
works and detect new sets of network biomarkers,
which have different physical meanings and biological
functions for certain type of diseases. Another possible
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promising improvement is to consider the relationships
between different phenotypes, such as tumor stages, to
identify phenotype responsive biomarkers. It is also
interesting to further move from interaction to module
level, which identifies module biomarkers [33-35] in bio-
logical networks. It is also important to consider the
dynamical information for predicting early state of com-
plex diseases, by dynamical network biomarkers [36-38]
and edge biomarkers [39].
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