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Abstract

RNA-sequencing is widely used to measure gene expression level at the whole genome level. Comparing
expression data from control and case studies provides good insight on potential gene markers for phenotypes.
However, discovering gene markers that represent phenotypic differences in a small number of samples remains a
challenging task, since finding gene markers using standard differential expressed gene methods produces too
many candidate genes and the number of candidates varies at different threshold values. In addition, in a small
number of samples, the statistical power is too low to discriminate whether gene expressions were altered by
genetic differences or not. In this study, to address this challenge, we purpose a four-step filtering method that
predicts gene markers from RNA-sequencing data of mouse knockout studies by utilizing a gene regulatory
network constructed from omics data in the public domain, biological knowledge from curated pathways, and
information of single-nucleotide variants. Our prediction method was not only able to reduce the number of
candidate genes than the differential expressed gene-only filtered method, but also successfully predicted
significant genes that were reported in research findings of the data contributors.

Background
RNA-sequencing (RNA-seq) data are widely used for
detecting differentially expressed genes (DEGs) [1,2] and
DEGs are often used for finding gene markers to explain
the phenotypic differences between control and cases.
However, in gene knockout studies, discovering gene
markers with the DEG-based method has several limita-
tions. It is known to be difficult to distinguish whether
the expression alteration resulted from the inactivation
of the knockout gene that caused phenotypic differences
or from the genetic variations that were merely from
differences in samples rather than phenotypic differ-
ences. The problem of distinguishing gene markers from

the DEG-based method becomes much more challen-
ging when the number of samples is small [3], an issue
that RNA-seq experiments face frequently.
Various methods and models were proposed to over-

come the difficulties of selecting phenotype related DEGs
from a small number of samples such as the Poisson
model [4], Bayesian approaches [5,6], and increasing the
sequence depth of samples [3]. Even though the intensive
studies have resolved the difficulties of DEG detection in
some degree, there is no method that can effectively
suggest phenotype related DEGs from a small number of
samples. In order to obtain significant DEGs, a recent
study suggests increasing the number of biological sam-
ples rather than increasing the sequence depth [7]. How-
ever, increasing the number of biological samples is not
easy for many reasons including budget issues, hence a
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new approach that can detect significant gene markers in
a small number of samples is neccesary.
In this study, we propose a new method that distin-

guishes gene markers with a small number of samples
from case-control studies (especially, in knockout stu-
dies), by combining multiple methods such as DEG,
gene regulatory network (GRN), biological pathways and
single-nucleotide variants (SNVs), in a single computa-
tional framework.

Proposed method for selecting phenotype
specific DEGs
Our gene marker selection method is a reductionist-
approach by adding more filters at each step as
described below. The order of filtering steps is illu-
strated in Figure 1.

1. The first filter is to use a method to identify DEGs
between control and case samples. In this study, we
used fold change, a classical DEG selection method.
2. The filter at the second step is to use GRN. GRN
is constructed from large volume of public data to
represent the whole gene regulatory network. DEGs
that are included in the network are selected as
candidates.
3. The third filter utilizes biological pathway infor-
mation. Candidates that are not included in the
pathways are discarded.
4. Finally, candidates that have higher than a certain
rate of SNVs are discarded since the DEGs that have
SNVs possibly resulted from genetic differences
rather than phenotypic differences.

Candidate selection using DEGs
In the first step, DEGs were chosen as initial candidates of
gene markers. DEGs are used for the purpose of observing

the alteration of expression patterns that could explain
the phenotypic differences among samples. DEGs
were selected by using fold change of the expression value
(FPKM) between case and control. We used multiple cut-
offs in order to compare and observe differences in the
number of selected genes. In addition to candidate selec-
tion using DEGs, conditions such as up regulation and
down regulation were recorded at each threshold. As
shown in Table 1, the numbers of DEGs decreases signifi-
cantly when the cutoff value increases. However, it is diffi-
cult to determine which cutoff is appropriate to be
considered as candidates. In addition, the number of can-
didates are still too big even at the most restricted thresh-
old. Moreover, it is not clear whether the expression
alteration resulted from the differences of phenotype or
not. Therefore, the necessity of seeking additional infor-
mation arises, and needs to be combined to with initial
candidates in order to select more significant DEGs that
can explain whether the expression alterations resulted
from the phenotypic differences or from the genetic
differences.

Reducing candidates by combining GRN
In order to select significant gene markers from the can-
didates selected by DEGs, we need to investigate which
candidates are involved in the regulatory role that
caused phenotypic differences by comparing wild type
(WT) and knockout (KO) mice. Therefore, GRN is used
for the purpose of discarding non-significant genes, as
GRN is a very effective method that can consider com-
plex relationships of many genes [8] (in here, candidate
genes). NARROMI [9] was used for GRN construction.
Details of GRN construction are described in Methods
section. Using the topology information created by
NARROMI, we discarded those candidates that have
weak or no regulatory roles. In other words, potential
regulatory roles should exist between two DEGs. As a
result, genes that have regulatory roles remained as can-
didates. Table 1 shows the result of a reduced number
of candidates.

Reducing candidates by combining biological pathways
The combination of DEG and GRN information was
used not only for reducing the number of candidates
but also to select significant genes that have regulatory
roles that could represent the phenotypic differences
between WT and KO mice. However, it is also impor-
tant to ensure whether the candidates are related to the
curated biological pathways or not. Even though the
candidates were selected by considering their regulatory
roles from the gene complex, it is still not clear whether
they really have a role in pathways. Therefore, confirm-
ing the candidates in terms of domain knowledge is
necessary. In this study, we used KEGG pathway [10]

Figure 1 Overview of the gene marker selection method.
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for the confirmation. Candidates that do not have corre-
sponding information to the KEGG pathway are
excluded from the candidates. Table 1 shows that use of
biological pathways was able to narrow down the candi-
dates significantly.

Reducing candidates by combining SNV information
Even though we reduced the number of candidates by
using multiple filtering methods, it is necessary to elimi-
nate genes that have genetic differences that may not
represent phenotypic differences. However, since the sta-
tistical power is weak in a small number of samples, it is
difficult to distinguish whether the genetic differences
were caused by phenotypic differences or not. Therefore
we used a simple naive solution that removes genes that
have certain or higher SNV rate. This is to avoid the risk
of selecting SNVs resulted from genetic differences.
However, this process will remove SNVs that caused not
only non-phenotypic differences but also phenotypic dif-
ferences. Details of candidate reduction using SNVs are
explained in the Methods section.

Results and discussion
To show the effectiveness of our proposed method, we
used RNA-seq data of GSE47851 from NCBI Gene
Expression Omnibus (GEO) [11]. GSE47851 is from a
study that used Gata3 conditional deficient mice [12].
Specific details of preprocessing of RNA-seq data are
described in the Methods section. We used DEG, GRN,
biological pathways and SNV information to the RNA-
seq data in order to find gene markers that can distin-
guish the phenotypic difference between WT and KO.
The gradual combination of multiple filters showed a
dramatic reduction of the number of genes in each step
(Table 1, Figure 2). Since it is known that defining DEG
by fold change is an arbitrary selection, it is necessary to
compare the differences at each threshold. We used

various fold changes in order to observe the differences
in the number of candidates at each threshold. However,
we were intrigued by the results that the number of can-
didates varies less in combined filters (DEG, GRN, path-
way and SNV) than other filtering methods. Figure 2
interprets that the number of candidates in fold change
over 1.6 and less than 0.63 varies lesser than other
threshholds. Therefore, we decided to use fold change 1.6
and 0.63 in order to validate our study.
The biological significance of gene markers that were

selected by our method is discussed in terms of the
research article that used the GSE47851 data set. Selec-
tion of gene markers was done entirely by computa-
tional analysis without resorting to the literature and
our prediction results were compared with findings of
the data contributor. It is reported that genes of TNF
and TNFR super families, members of NFkB and cell-
surface markers of ILC2s have expression alterations

Table 1. Number of genes selected by each method.

Feature DEG DEG+GRN DEG+GRN+Pathway DEG+GRN+Pathway+SNV

Fold change (KO / WT) Number of candidate
genes

Number of candidate
genes

Number of candidate
genes

Number of candidate
genes

More than 1, Less than 1 12298 8834 3436 2622

More than 1.1, Less than 0.91 8953 6264 2441 1861

More than 1.2, Less than 0.83 6466 4322 1683 1272

More than 1.3, Less than 0.77 4631 2986 1179 879

More than 1.4, Less than 0.71 3495 2125 845 629

More than 1.5, Less than 0.67 2712 1574 633 463

More than 1.6, Less than 0.63 2153 1184 478 343

More than 1.7, Less than 0.59 1750 914 364 257

More than 1.8, Less than 0.56 1439 718 284 203

More than 1.9, Less than 0.53 1235 562 233 165

More than 2.0, Less than 0.5 1064 456 192 135

Figure 2 Comparison of the number of candidates of each
method at each fold change.
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when Gata3 is not activated in ILC2 cells [12]. The
following study stated:
“we found that many TNF and TNFR superfamily

genes, such as Tnfrsf9 and Tnfsf21 and NFkB family
members, including Nfkb2 and Relb, showed altered
expression patterns. In addition, the cell-cycle inhibitor
Cdkn2b was up regulated upon Gata3 inactivation”.
Our method found 4 out of 5 genes included in the

statement above. Where 4 genes are in bold face and un-
matched genes are struckthrough. In addtion, we were
able to reconfirm the following facts by mapping the can-
didate genes to the KEGG pathway. Figure 3C represents
expression alteration in NF-kappa B signaling pathway,
showing down regulations of Nfkb2 (p100) and Relb
when Gata3 is inactivated. Expression alteration was
also detected in the TNF signaling pathway (Figure 4C).
TNF and TNFR super family genes, such as Tnf and
Tnfrsf9, were successfully detected in the pathway as well
as the statement. In addition, up regulation of Cdkn2b
showed in Cell cycle pathway (Figure 5C) which was also
stated exactly from the study.
The study also stated about the expression alterations

in cell-surface markers of ILC2s:
“130 genes are positively regulated by GATA3 in

ILC2s, but not in Th2 cells; they include Icos, Il2ra,
Kit, Il1r2, Cysltr1, Htr1b, and Tph1, many of which are
cell-surface markers of ILC2s.”
In the statement above, 4 genes among 7 were

successfully matched. Inferring that our proposed
method was able to find that the candidates filtered by
multiple information were indirectly verified in terms of
findings described in the studies that used the data,
which shows the effectiveness of determining important
genes as potential gene markers.
In addition to the effectiveness, we noticed that our

filtering method was able to reduce false positive effec-
tively and helps to focus on significant genes by using
biological pathways. Figure 3, Figure 4 and Figure 5
show not only a dramatic reduction in gene numbers in
the pathway (from non-filtered to full-filtered) but also
candidate genes are likely to be as gene markers. This
implies that our proposed method might help researchers
focus on genes that may have caused phenotypic differ-
ences, hence able to discover true gene markers more
efficiently.
We summarize the performance of our method in

terms of the gene marker selection. We defined the
reported genes (26 in total) [12] as gene markers (true
positive) and used them to evaluate of our filter method
in terms of precision, recall, F-measure, and accuracy.

Precision =
tp

tp + fp
(1)

Recall =
tp

tp + fn
(2)

F −measure =
2tp

2tp + fp + fn
(3)

Accuracy =
tp + tn

tp + tn + fp + fn
(4)

True positives (tp) represent successfully selected gene
markers and false positives (fp) as incorrect selected gene
markers. False negatives (fn) represent incorrectly dis-
carded gene markers and true negatives (tn) as correctly
discarded non-gene markers. Table 2 summarizes preci-
sion, recall, F-measure, and accuracy of the combined fil-
ters. In terms of precision, with no filtering method,
there was only 0.002 of chance to select a gene marker
and 0.011 for the DEG-only filtering method (Table 2).
Both non-filtered and DEG-only filtered methods were
not powerful enough to detect potential gene markers in
terms of the performance measures above. However,
when we gradually added GRN, pathway, and SNV filters,
the performance improved dramatically. In terms of pre-
cision, GRN pathway, and SNV filters achieved 0.041.
About 4 times higher precision compared to the DEG-
only filter. Naturally higher precision comes with lower
recall rates. However, reduction in recall was not as dra-
matic as precision, reporting 0.538. When we consider
both precision and recall, it was evident that our filtering
method outperforms the DEG-only method in terms of
both F-measure and accuracy. For the F-measure, GRN,
pathway, and SNV filters achieved 0.076 that is 3.6 times
higher F-measure than the DEG-only filter. For accuracy,
GRN, pathway, and SNV filters achieved 0.972 that is 1.2
times higher accuracy when compared to the DEG-only
filter. In summary, our proposing method, the combina-
tion analysis of DEG, GRN, pathway, and SNV filters out
performs the DEG-only filtering method in terms of pre-
dicting potential gene markers.

Conclusion
We proposed a novel method that use a four-step fil-
tering strategy in order to find potential gene markers
from RNA-seq data of mouse knockout studies that
have small number of samples. The standard DEG
method was used to select candidates that explains the
phenotypic differences between KO and WT in the first
filtering step. A combination of GRN, biological path-
ways and SNV information was able to narrow down
significant genes that have regulatory roles and reduced
the risk of including candidates that have genetic differ-
ences. As a result, we were able to distinguish multiple

Hur et al. BMC Medical Genomics 2015, 8(Suppl 2):S10
http://www.biomedcentral.com/1755-8794/8/S2/S10

Page 4 of 9



gene markers in a small number of samples by reproducing
the research findings reported in a knockout study [12].
Moreover, the use of KEGG pathways [10] for gene marker
selection can be viewed as utilizing the prior information
since pathways are constructed based on information from
the literature. Thus, mapping potential gene markers to the
pathways takes advantage of the interpretability of omics
data from mouse knockout studies.
However, several limitations of this study need to be

addressed. First of all, there should be more rigorous study
of GRN construction. Using much omics data for GRN
construction somehow preserves important relationships
between transcription factors and their target genes, but
how much data is needed for GRN construction is not rig-
orously studied. In this study, we had enough omics data
for the network construction, therefore we were able to

use a simple method using NARROMI [9]. However, when
the amount of omics data for network construction is not
enough, special techniques such as low order partial corre-
lation based methods [13] should be considered. Second,
removing genes with genetic variation allows us to focus
on genes that are relevant to the underlying biological
mechanisms for the knockout study. How-ever, genetic
variations do not necessarily affect transcription activity of
genes, and it is possible that our method might discard
some SNVs that were affected by the knockout gene.
Thus we need to further investigate the effect of genetic
variations on transcription activities. Finally, we plan to
develop a machine learning based gene ranking method so
that genes selected at the last step can be ranked and help
biologists to prioritize the follow up study after the knock-
out study.

Figure 3 Comparison of the number of the gene marker candidates between non-filtered and filtered method in NF-kappa B
signaling pathway. (A) NF-kappa B signaling pathway mapped with non-filtered candidates. With no filtering method, too many genes are
shown in the pathway which makes it difficult to find an appropriate gene marker. (B) NF-kappa B signaling pathway mapped with candidates
filtered by DEG. The number of genes is greatly reduced compared to the non-filtered method. However, difficulty exists in finding significant
gene markers as the number of genes is still too great. (C) NF-kappa B signaling pathway mapped with full-filtered candidates. The number of
genes was greatly reduced compared to non-filtered or DEG-only filtered candidates while keeping the genes reported by Yagi et al.(2013).
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Methods
Data Collection
Public data (Microarray, RNA-seq) of mice were col-
lected from NCBI GEO. For Microarray, each series
matrix files from GSE45929 [14], GSE16741 [15],
GSE30906 [16], GSE36780 [17], GSE40375 (not pub-
lished), GSE41380 [18], GSE43663 [19] were used for
GRN construction. These data contains gene expression
value of multiple samples (42 samples in total) that were
created by the same microarray platform (Illumina Mou-
seWG-6 v2.0 expression beadchip) and preprocessed by
R bioconductor lumi package [20] (variance stabilizing
transform, quantile normalization). Note that these sam-
ples differs in mouse’s strain, genotype and treatment.
For RNA-seq data, GSE47851 were used for the evalua-
tion of the study’s method. RNA-seq data of GSE47851
are from an experiment of Gata3 KO that have multiple

SRA files. We used 8 SRA files (SRR896215, SRR896216,
SRR896217, SRR896218, SRR896219, SRR896220,
SRR896221, SRR896222) that are raw data in two condi-
tions where each of the conditions have 2 biological sam-
ples and 2 technical replicates of each biological sample.

Gene regulatory network construction
We integrated gene expression values of 7 series matrix
files (GSE45929, GSE16741, GSE30906, GSE36780,
GSE40375, GSE41380, GSE43663) into a single matrix
and quantile normalized gene expression values of every
sample and used it as an expression profile for construc-
tion of GRN. GRN is constructed by using NARROMI
[9] with a default option. As NARROMI requires a list
of transcription factors and a list of genes, we collected
a list of transcription factors and co-factors from the
Animal Transcription Factor Database [21] and defined

Figure 4 Comparison of the number of the gene marker candidates between non-filtered and full-filtered method in TNF signaling
pathway. (A) TNF signaling pathway mapped with non-filtered candidates. With no filtering method, too many genes are shown in the
pathway which makes it difficult to find an appropriate gene marker. (B) TNF signaling pathway mapped with candidates filtered by DEG.
Number of genes are greatly reduced than non-filtered method. However, difficulty exists in finding significant gene marker as the number of
genes are still too many. (C) TNF signaling pathway mapped with full-filtered candidates. The number of genes were greatly reduced than non-
filtered or DEG-only filtered candidates while keeping the genes reported by Yagi et al.(2013).
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this as a transcription factor list. For the gene list, we
simply defined it as a list of whole genes that includes
not only transcription factors and co-factors but also
non-transcription factors. As a result NARROMI con-
structed a network topology of 2950865 edges. We
support a URL for the network topology file which
was used in this study. (http://epigenomics.snu.ac.kr/
mouse_network/total_mouse.topology)

Preprocess of RNA-seq
An annotation file and reference genome from ENSEMBL
(Mus musculus.GRCm38.70) [22] were used. Samples that
have technical replicates were integrated into a single file
and trimmed by using Trim Galore [23]. Trimmed
sequences were then aligned by using Tophat [24] with
’-G’ option. After sequences were aligned, we used

Cuffdiff [25] by inputting biological replicates with a
default option. Genes that have FPKM under 1 are
excluded, since these genes tend to have high fold changes
and most of them are artifacts of low gene expression
values.

SNV Calling
Samtools mpileup [26] was used for SNV calling. We
used accepted hits.bam which was created by Tophat
results. Options used in Samtools were ’mpileup
–uf’ and ’view -bvcg’ for bcftools. Results of Sam-
tools were filtered by varFilter with ‘-D100’ option. As a
result, 4 vcf files (WT1, WT2, KO1, KO2) were pro-
duced. In order to observe SNV differences between
WT and KO, we discarded insertions and deletions
from each vcf file. Then we counted the number of

Figure 5 Comparison of the number of the gene marker candidates between non-filtered and full-filtered method in Cell cycle
pathway. (A) Cell cycle pathway mapped with non-filtered candidates. With no filtering method, too many genes are shown in the pathway
which makes it difficult to find an appropriate gene marker. (B) Cell cycle pathway mapped with candidates filtered by DEG. The number of
genes is greatly reduced compared to the non-filtered method.. However, difficulty exists in finding significant gene marker as the number of
genes are still too many. (C) Cell cycle pathway mapped with fullfiltered candidates. The number of genes was greatly reduced compared to the
non-filtered or DEG-only filtered candidates while keeping the genes reported by Yagi et al.(2013).
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mutations of each gene in each vcf file and calculated
the average of mutation in WT and KO. Finally, we
compared the rate of mutations for each gene between
WT and KO, mutation rates (fold change) greater than 2
were considered as possible genetic variation effects.
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