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Abstract

Background: Coronary artery disease (CAD), one of the leading causes of death globally, is influenced by both
environmental and genetic risk factors. Gene-centric genome-wide association studies (GWAS) involving cases and
controls have been remarkably successful in identifying genetic loci contributing to CAD. Modern in silico platforms,
such as candidate gene prediction tools, permit a systematic analysis of GWAS data to identify candidate genes for
complex diseases like CAD. Subsequent integration of drug-target data from drug databases with the predicted
candidate genes can potentially identify novel therapeutics suitable for repositioning towards treatment of CAD.

Methods: Previously, we were able to predict 264 candidate genes and 104 potential therapeutic targets for CAD
using Gentrepid (www.gentrepid.org), a candidate gene prediction platform with two bioinformatic modules to
reanalyze Wellcome Trust Case-Control Consortium GWAS data. In an expanded study, using five bioinformatic
modules on the same data, Gentrepid predicted 647 candidate genes and successfully replicated 55% of the
candidate genes identified by the more powerful CARDIoGRAMplusC4D consortium meta-analysis. Hence, Gentrepid
was capable of enhancing lower quality genotype-phenotype data, using an independent knowledgebase of
existing biological data. Here, we used our methodology to integrate drug data from three drug databases: the
Therapeutic Target Database, PharmGKB and Drug Bank, with the 647 candidate gene predictions from Gentrepid.
We utilized known CAD targets, the scientific literature, existing drug data and the CARDIoGRAMplusC4D meta-
analysis study as benchmarks to validate Gentrepid predictions for CAD.

Results: Our analysis identified a total of 184 predicted candidate genes as novel therapeutic targets for CAD, and
981 novel therapeutics feasible for repositioning in clinical trials towards treatment of CAD. The benchmarks based
on known CAD targets and the scientific literature showed that our results were significant (p < 0.05).

Conclusions: We have demonstrated that available drugs may potentially be repositioned as novel therapeutics for
the treatment of CAD. Drug repositioning can save valuable time and money spent on preclinical and phase I
clinical studies.

Background
Coronary artery disease (CAD) or Coronary heart dis-
ease (CHD) is a complex disorder which is a leading
cause of death and disability (12.2%) worldwide [1]. In
CAD, a waxy substance called ‘plaque’ collects inside

the coronary arteries and other blood vessels which sup-
ply oxygen-rich blood to heart muscles [2]. Over time,
hardened plaque narrows the coronary arteries, reducing
the flow of oxygen-rich blood to the heart, resulting in
CAD [2].
Environmental and genetic risk factors play an impor-

tant role in the development of CAD. Lifestyle-related
environmental factors include smoking, drinking and
eating habits [3,4]. CAD is also inherited in families,
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suggesting the disease has a strong genetic basis [5].
CAD is thus a complex disease involving multiple risk
factors, and is characterised by low penetrance of
disease genes and non-Mendelian genetic transmission
patterns. Heritability of CAD is estimated between 30%-
60% by twin studies [6]. However, only a minor portion
of heritability is explained by conventional risk factors
such as decreased Low Density Lipoprotein (LDL) parti-
cle size and high Systolic Blood Pressure (SBP) [7,8].
Genome-Wide Association Studies (GWAS) are mak-

ing progress towards revealing single-nucleotide poly-
morphisms (SNPs) associated with CAD. The Wellcome
Trust Case Control Consortium (WTCCC) conducted
the first large-scale GWAS study of 2,000 cases of CAD
compared with white Europeans 3,000 controls [9]. The
WTCCC study identified one highly independent asso-
ciation signal for CAD (p < 5 × 10-7) in the genetic
locus 9p21 [9]. Another GWAS comparing 1,222 CAD
cases with European 1,298 controls identified a second
genetic locus (3q22) for CAD [10]. The typical effect
sizes for individual SNPs were fairly small (~1%) in
these studies.
In recent years, meta-analysis techniques have

emerged as a successful approach for increasing the
power of GWAS by pooling results from multiple
GWAS studies. The Coronary ARtery DIsease Genome-
Wide Replication and Meta-analysis (CARDIoGRAM)
consortium identified 13 new genetic loci (p < 5 × 10-8)
and 26 candidate genes in a meta-analysis study of 14
CAD GWASs comprising a total of 22,233 individuals
with CAD compared to European 64,762 controls [11].
Another meta-analysis performed by the Coronary
Artery Disease (C4D) Genetics Consortium identified
five genetic loci for CAD (p < 5 × 10-8) and six candi-
date genes using data from four CAD GWAS compris-
ing a total of 15,420 CAD cases (6,996 South Asians
and 8,424 Europeans) and 15,062 controls (7,794 South
Asians and 7,268 Europeans) which were replicated in
an independent sample of 21,408 cases and European
19,185 controls [12]. Together, the CARDIoGRAM and
C4D consortia (CARDIoGRAMplusC4D) scanned
63,746 CAD cases and 130,681 controls (South Asian
and European) identifying 15 novel genetic loci and 20
likely candidate genes for CAD [13]. In total, these
meta-analysis techniques successfully identified a further
32 genetic susceptibility loci for CAD beyond the two
identified by the original studies. However, most of the
identified genetic loci were limited to a highly significant
statistical threshold (p < 5 × 10-8) because the genotype/
phenotype data is inherently noisy.
Another approach to mining this inherently noisy data

is to filter less statistically significant data using an inde-
pendent data source. We previously developed protocols
to predict candidate genes for complex diseases by

reanalysing GWAS data using the Gentrepid candidate
gene prediction tool as the biological knowledgebase,
starting with data from a series of four lower statistical
thresholds (p ≤ 5 × 10-7, p ≤ 10-5, p ≤ 10-4, p ≤ 10-3)
[14]. Gentrepid utilizes five bioinformatic modules to
predict candidate genes for complex diseases: two sys-
tems biology modules - Common Pathway Scanning
(CPS) and Protein-Protein Interactions (PPI); one
domain-homology recognition approach - Common
Module Profiling (CMP) [14,15]; and two modules based
on identification of nucleic acid regulatory factors
involved in complex diseases - the common regulatory
targets (CRT) module, and the microRNA regulatory
module (MIR) [16]. Previously, we were able to predict
264 candidate genes for CAD [9,14] using two of these
modules: CMP and CPS over six search spaces. In an
expanded study, using a total of five bioinformatic mod-
ules: CMP, CPS, PPI, CRT and MIR [16], Gentrepid
replicated 204 of the 264 predicted candidate genes in
the previous two-module study, and identified an addi-
tional 443 candidate genes. In total, Gentrepid identified
647 candidate genes for CAD [16].
Compared to meta-analysis studies which have been per-

formed for CAD, Gentrepid predicted 16%, 17% and 55%
of the candidate genes identified in the CARDIoGRAM,
C4D and CARDIoGRAMplusC4D meta-analysis studies
respectively [11-13,16]. These data show that the Gentrepid
results are in better alignment with the more powerful
CARDIoGRAMplusC4D study which pooled cases and
controls from the CARDIoGRAM and C4D studies.
Recently, we extended our computational pipeline by

associating predicted candidate genes with drug-target
information extracted from three publicly available drug
databases: Drug Bank [17], the Pharmacogenomics
Knowledgebase (PharmGKB) [18], and the Therapeutic
Target Database (TTD) [19]. Applying this pipeline to
the predicted candidate genes obtained by reanalysing
WTCCC-GWAS data for seven complex diseases includ-
ing CAD [14], we showed 38% of the predicted candidate
genes (102 of 264 predicted candidate genes) are poten-
tial therapeutic targets for CAD, and predicted 743 novel
therapeutics suitable for repositioning in clinical trials to
accelerate the CAD drug discovery process [20].
In this study, we specifically focused on CAD, identify-

ing novel therapeutic targets among the 647 predicted
candidate genes for CAD by integrating drug-target
association data extracted in the previous study [16,20].
We also identified novel therapeutic targets and asso-
ciated novel therapeutics suitable for repositioning
towards treatment of CAD. These were benchmarked
using known CAD targets, the scientific literature, exist-
ing drug data and the CARDIoGRAMplusC4D meta-
analysis study. We have demonstrated that it is possible
to translate a large number of susceptibility genetic loci
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into clinical treatments of CAD using the Gentrepid
candidate gene prediction tool. Thus, Gentrepid can be
utilized as a drug discovery tool to identify novel treat-
ments for CAD.

Methods
We implemented a workflow to identify potential thera-
peutics for CAD by integrating the two following data
sets (Figure 1):
1. A predicted candidate gene data set for CAD,

obtained by reanalysing the WTCCC-GWAS data [9],
with Gentrepid using five bioinformatic modules: CMP,
PPI, CPS, CRT and MIR [15,16];
2. A drug-gene target data set retrieved from three

publically available drug databases namely TTD, Drug-
Bank and PharmGKB [17,19,21].

Candidate gene data set
In our previous work, we predicted a total of 647 candi-
date genes for CAD by careful reanalysis of the
WTCCC GWAS data on CAD [9] using the Gentrepid
candidate gene prediction system [16].
The WTCCC study used a highly stringent significance

threshold (p ≤ 5 × 10-7) to correct for multiple testing in

GWAS analysis [9]. While robust, this approach resulted
in association of only one genetic locus with CAD [14]. To
address the high false negative rate of GWAS studies, we
previously proposed a bioinformatics strategy to sift
through genes near the implicated loci of a large number
of SNPs of slightly lower significance thresholds. We con-
sidered four thresholds of decreasing stringency: a highly
significant set (HS - p ≤ 5 × 10-7), a Medium highly signifi-
cant set (MHS - p ≤ 10-5), a Medium weakly significant set
(MWS - p ≤ 10-4), and a weakly significant set (WS - p ≤
10-3). In total, we constructed a series of four SNP sub sets
comprising a total of 757 SNPs for CAD [14].
An additional problem arises when mapping these

SNPs to nearby genes. Although the causal SNPs are
likely to be in linkage disequilibrium with the implicated
SNPs, genomic architecture is still not well understood.
The implicated SNP may be in a control region distal to
the transcribed region of the gene. Six different search
spaces - three of fixed-widths and three proximity-
based, were created around each SNP-based genetic
locus, for analysis by the Gentrepid candidate gene pre-
diction system [14]. Thus, we utilized six gene selection
methods around each SNP to construct the gene search
spaces, using four SNP sets acquired by incrementally

Figure 1 Workflow. Computational workflow to identify therapeutic targets and novel therapeutics for CAD by integrating genetic,
bioinformatic and drug data. We used Gentrepid as a candidate gene prediction platform to predict candidate genes and DrugBank, TTD and
PharmGKB as databases to extract drug data. Abbreviations - TTD - Therapeutic Target Database; PharmGKB - Pharmacogenomics
Knowledgebase.

Grover et al. BMC Medical Genomics 2015, 8(Suppl 2):S1
http://www.biomedcentral.com/1755-8794/8/S2/S1

Page 3 of 11



lowering the significance threshold of the data, resulting
in a total of 24 search spaces [9,14].
For each of these 24 search spaces, we used the fol-

lowing five bioinformatic modules to predict and priori-
tize candidate genes for CAD using the Gentrepid
candidate gene prediction tool [16]: Two systems biol-
ogy approaches - a) Common Pathway Scanning (CPS)
and, b) Protein-Protein interaction module (PPI); one
domain homology module - c) Common Module Profil-
ing (CMP) and; two nucleic acid based regulatory mod-
ules - d) Common Regulatory Targets (CRT) and, e) the
Micro-RNA regulatory module (MIR) [16].
The two systems biology modules, CPS and PPI, are

based on the principle that common phenotypes are
associated with proteins that participate in the same pro-
tein complex or biochemical pathway [22]. The domain-
homology module, CMP, is a sequence analysis approach
based on the assumption that candidate genes are similar
in function to disease genes already determined for the
phenotype [23]. We have described these methods in
detail in our previously published work [14,15,20].
The two nucleic acid-based regulatory modules: CRT

and MIR are based on the assumption that disruption of
regulatory elements controlling gene expression can
cause diseases [24]. CRT searches for genes in the sus-
ceptibility genetic loci that bind with common transcrip-
tion factors. Regulatory information for genes of the
search space was retrieved from the Open REGulatory
ANNOtation (oRegAnno) database, a publically available
database of curated known regulatory elements from the
scientific literature [25]. The MIR module is based on
the assumption that dysfunction of micro-RNAs (miR-
NAs) plays a key role in the heart, central nervous sys-
tem, and immune system-related diseases [26]. MIR
searches the genetic susceptibility loci for genes which
are common miRNA targets and present in regulatory
hubs [16]. MicroRNA information for this module was
extracted from the mirBase database, an online reposi-
tory for microRNA sequences and annotations [27].

Drug-gene target data set
We used a drug-gene target data set compiled from
three online drug databases: DrugBank [17], PharmGKB
[21] and TTD [19], described in detail in our previously
published work [20].
DrugBank is a chemical and clinical drug database [18],

combining detailed drug data and disease information with
comprehensive drug-target associations [17]. Previously,
we retrieved 6,711 drug entries active against 3,410 unique
drug targets for several species from DrugBank [20]. We
used the G-profiler conversion tool to translate human
drug target information to official HUGO gene symbols
[20,28], resulting in a dataset comprising 3,910 drugs asso-
ciated with 2,022 human drug targets [20].

The Pharmacogenomics Knowledgebase (PharmGKB)
is a clinical drug database, combining information about
drugs, diseases and targeted genes [21]. This database
describes around 3,097 drugs and 26,961 human genes,
but not all of these genes are associated with drugs. We
obtained a licensed PharmGKB annotation dataset,
describing a total of 382 drugs associated with 566
human drug targets [20].
The Therapeutic Target Database (TTD) is a chemical

drug database, integrating drug data with therapeutic
targets [19]. TTD contains 17,816 drugs (approved, clin-
ical and experimental) associated with 2,025 human and
non-human drug targets. We replaced the UniProt
accession numbers with official HUGO gene symbols
using the G-profiler conversion tool [28], extracting
2,960 drugs for 544 unique human drug targets [20].
Pooling the data from DrugBank, TTD and PharmGKB,

we obtained a total of 2,494 unique gene targets from all
the databases, comprising ~ 8% of the entire human
genome [20]. A comparison of the extracted drug-target
datasets from the three databases revealed that only 4% of
human drug targets were common to all three drug data-
bases [20]. We retrieved the maximum number of unique
targets from DrugBank (1,495), followed by TTD (129),
and PharmGKB (326) [20]. In pairwise comparisons,
DrugBank and TTD share the maximal number of drug
targets (398), while TTD and PharmGKB share the fewest
(111) [20].
Of the 9,991 unique drugs contained in these three

drug databases [20], 50% of them are found only in
DrugBank, while the unique contributions from TTD
and PharmGKB were 15-18% [20]. In pairwise compari-
sons, TTD and PharmGKB share 15-19% of their
retrieved drugs with DrugBank [20]. DrugBank and
PharmGKB share the maximal number of drugs (1620),
while TTD and PharmGKB share the fewest (1352) [20].
In total, we retrieved a total of 7,252 unique drugs asso-
ciated with 2,494 human drug targets from all three
drug databases [20].

Identification of novel therapeutics and therapeutic
targets
We mapped predicted therapeutic targets from the pre-
dicted candidate genes with the extracted drug-gene tar-
get association files. A total of 647 predicted candidate
genes for CAD were mapped separately with the three
drug-target association files, and results were retrieved.
Within this set, we distinguished known and novel

therapeutic targets and therapeutics for CAD. If a drug
associated with a therapeutic target is not registered as a
therapy for CAD, it is designated as a novel therapeutic
directed towards a predicted candidate gene target for
CAD. Novel therapeutics may be suitable for reposition-
ing towards treatment of CAD.
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Comparison with previous studies
We compared therapeutic targets obtained in our pre-
vious study with this study to identify therapeutic tar-
gets for CAD using the WTCCC-GWAS data. In our
previous study, we utilised the CMP and CPS bioinfor-
matic modules to predict candidate genes and therapeu-
tic targets [14,20]. In this study, we integrated the
results from five bioinformatic modules: CMP, PPI, CPS,
CRT and MIR. Thus, we compared therapeutic targets
obtained from two different bioinformatic studies con-
ducted to reanalyse the same WTCCC-GWAS data [9].
The CARDIoGRAMplusC4D consortium meta-analysis

compared 63,746 CAD cases with 130,681 controls iden-
tifying 15 genetic loci and 20 candidate genes for CAD
[29]. Our previous reanalysis of this data with Gentrepid
replicated 11 of the 20 candidate genes and made three
novel gene predictions (LRPPRC, GUCY1B3, MAP3K4)
[16]. In this study, we identified potential therapeutic tar-
gets after mapping the 20 candidate genes obtained from
the CARDIoGRAMplusC4D study data and the three
novel genes predicted by Gentrepid with the extracted
drug-gene target dataset. We also compared the identi-
fied therapeutic targets from the CARDIoGRAMplusC4D
study with the Gentrepid-predicted therapeutic targets.

Validation of predicted therapeutic targets
We validated the predicted therapeutic targets using two
benchmarks as described in our previously published
work [20]. The first benchmark tested the ability of Gen-
trepid to replicate known therapeutics for CAD. How-
ever, this benchmark does not give any idea about the
validity of the novel predictions for CAD. Therefore, we
performed a second benchmark to assess the validity of
the candidate gene predictions using text mining of the
existing Pubmed literature for CAD.
In the first benchmark, we classified genes present in the

six search spaces as “CAD candidates” or “CAD non-
candidates”. We considered genes which are already
known drug targets for CAD as “true positives”. Targets
which were not predicted by Gentrepid, but present in the
search space and targeted by currently registered thera-
peutics for the CAD, were designated “false negatives”.
Genes, which were neither predicted for CAD nor targeta-
ble by CAD drugs, were designated as “true negatives";
and predicted novel therapeutic targets were selected as
“false positives”. Finally, we plotted a Receiver Operation
Characteristic (ROC) curve considering six thresholds
based on the number of targets present in the six search
spaces constructed (see candidate gene dataset section in
Methods for details). Non-linear regression analysis, was
performed to fit the ROC curves (see Validation of pre-
dicted therapeutic targets in Results and Discussion).
In the second benchmark, we extracted Pubmed IDs

of literature related to CAD from Pubmed in Feb. 2014.

We mapped the retrieved Pubmed IDs to the gene cita-
tion data downloaded from Entrez Gene (ftp//ftp.ncbi.
nih.gov/gene/) to calculate the number of article cita-
tions for each target, using both the gene name and the
phenotype name (CAD). Further, a ROC curve was
created considering four thresholds of article citations
(one, five, ten and fifteen). Finally, non-linear regression
analysis was performed to fit the ROC curve (see Vali-
dation of predicted therapeutic targets in Results and
Discussion).

Results and discussion
Discovery of novel therapeutic targets
Gentrepid identified 647 candidate disease genes for CAD
[16]. We searched for potential drug-targets in the
extracted drug gene-target files from the three drug data-
bases and found 192 candidate genes (30%) are potential
therapeutic targets for CAD (Figure 1). This may seem
like a large number, but as the typical effect sizes of the
most significant loci in the original WTCCC study was
~1%, and the estimated heritability of CAD is 30-60%, a
minimum of 30-60 genes are expected to underline the
disease. Therefore, it is not implausible that all of these
predicted genes are involved in aetiology of CAD.
Each drug database made significant contributions to

therapeutic target identification, with the maximum
contribution from DrugBank (173), followed by TTD
(57) and PharmGKB (15) (Figure 2). The enrichment of
druggable targets in the predicted candidate gene data-
set for CAD was 30% compared to the value of ~8% for
the entire genome which might be a selection effect,
either at the genome level or the knowledgebase level
[20]. For instance, at the genome level, it has been pos-
ited that a set of “troublemaker” or disease genes exists
[30]. Alternatively, at the knowledgebase level, we may
know more about drugs for the CAD phenotype-asso-
ciated genes as a subset of genes in the human genome,
than the remainder of the genes in the genome.
We performed a binary classification of the 192 pre-

dicted therapeutic targets to distinguish novel and repli-
cated therapeutic targets. Novel therapeutic targets are
genes targeted by therapeutics already approved, or still in
clinical trials for other diseases, but not for CAD. We
found 184 novel therapeutic targets, accounting for almost
95% of the targets identified in our analysis. A selection of
these are shown in Table 1. The remaining eight targets
have therapeutics which are either approved or in ongoing
clinical trials for CAD (Table 2). These eight targets are
Gentrepid-predicted therapeutic targets that are already
known to be associated with CAD (Table 1), and are thus
replicated directly from the genetic data de novo. These
eight replicated known targets are designated “true posi-
tives” in the first benchmark described below. We also
identified 30 known targets of drugs used in the treatment
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of CAD present in drug databases, which were not pre-
dicted by Gentrepid from the WTCCC GWAS data (Addi-
tional file 1 - Table S1). Most of these were not present in
the search spaces constructed from the genetic data: sug-
gesting that the genetic data is at odds with these currently
used therapeutics; or the genetic architecture is more
complicated than was assumed during construction of the
search spaces. However, four of these 30 targets are

present in all six of the search spaces constructed for the
weakly significant dataset, but were not retrieved by Gen-
trepid (Additional file 1 - Table S1). This may be failure of
the system at the knowledgebase level, possibly due to
incomplete coverage by the databases used. These four
targets are considered false negatives in the first bench-
mark described below (Validation of predicted therapeutic
targets in Results and discussion).

Figure 2 Predicted therapeutic targets for CAD by drug database. Therapeutic targets for CAD obtained from three drug databases. The
maximum contribution was from DrugBank (173). A further 19 unique targets were contributed by TTD and PharmGKB. We also identified seven
therapeutic targets common to all three drug databases. In pairwise comparisons, there were no common therapeutic targets between the TTD
and PharmGKB databases that were unique to these two databases i.e. not found in DrugBank. However, there were 34 targets common to TTD
and DrugBank, and five targets common to PharmGKB and DrugBank databases. Abbreviations - CAD - Coronary Artery Disease; TTD -
Therapeutic Target Database, PharmGKB - Pharmacogenomics Knowledgebase.

Table 1. Selected novel therapeutics suitable for repositioning for CAD

Target *Drug name Disease Action Status *Database

CHRM3 Tiotropium Chronic obstructive pulmonary disease Antagonist Approved TTD

HTR1A Fluvoxamine Depressive disorder Unknown Unknown PharmGKB

FLT1 Sorafenib Advanced renal cell carcinoma Inhibitor Launched TTD

ABAT Vigabatrin Epilepsy Inhibitor Approved TTD

GRIK2 Metharbital Epilepsy Antagonist Approved DrugBank

IL2RB Aldesleukin Metastatic renal cell carcinoma Agonist Approved DrugBank

ITGB1 Antithymocyte globulin Prevention of renal transplant rejection Unknown Approved DrugBank

PDGFRA Becaplermin Skin ulcers (from diabetes) Unknown Approved DrugBank

IL2RB Daclizumab Prevention of renal transplant rejection Antibody Approved DrugBank

VEGFA Bevacizumab Metastatic breast cancer Unknown Approved DrugBank

Selected novel therapeutics suitable for repositioning to develop potential treatment of CAD.

(* These drugs mentioned here are only selected examples because one therapeutic target may be associated with multiple drugs); (* Drug databases mentioned
here are only selected examples because one drug-target association may be described in more than one drug database). Abbreviations - PH - Phenotype; TTD -
Therapeutic Target Database; PharmGKB - Pharmacogenomics Knowledgebase; CAD - Coronary Artery Disease.
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We further classified the novel targets into targets of
approved drugs vs targets of drugs in clinical trials. We
found 53 targets with approved drugs, 74 targets with
drugs in clinical trials, and 56 targets of both approved
drugs and drugs in clinical trials (Figure 3). Both
approved drugs, and drugs in clinical trials associated
with the novel targets, are suitable for repositioning
towards treatment of CAD. However, approved thera-
peutics associated with novel targets will be the priority
for further repositioning studies because of the lower
risk involved.

Identification of novel therapeutics
We identified novel therapeutics by comparing indications
of predicted drugs with our phenotype of interest i.e. CAD.
If a drug is neither approved nor in clinical trial for CAD,
it is predicted as a novel therapeutic suitable for reposition-
ing in clinical studies. Of the 993 identified unique drugs,
we found the maximum number of drugs from DrugBank
(821), and the remainder from TTD (234) and PharmGKB

(23). By comparing the indications of predicted drugs with
the phenotype (CAD), we determined 981 of the 993 pre-
dicted drugs are novel therapeutics. The percentage of
drugs that may be repositioned towards treatment of CAD
was around 14% of the total number of drugs extracted
from the databases (981 of 7,252 extracted drugs). In total,
we found 981 novel therapeutics: 331 of these were
approved, 636 were in clinical trials, and 14 were both
approved and in clinical trials for diseases other than CAD.
For example, the drug succinylcholine, which acts upon
the CHRM3 gene product, is approved as a therapeutic for
spasm (Table 1). Our study predicts CHRM3 as a predicted
candidate gene and novel therapeutic target for CAD, sug-
gesting that the drug succinylcholine may be repositioned
as a novel therapeutic for CAD.

Identification of known therapeutics
We replicated 12 known therapeutics for the eight
Gentrepid-replicated targets for CAD (Table 2). For
example, the approved drug anistreplase, retrieved

Table 2. Replicated therapeutics for CAD

Target *Drug name Status Action *Database

PLG Anistreplase Approved Activator TTD

ALOX5AP DG031 Suspended in Phase III Inhibitor TTD

PLAT Urokinase Approved Activator DrugBank

AGTR1 Losartan Approved Antagonist DrugBank

NOS3 ACCLAIM Phase III Unknown DrugBank

PLAUR Urokinase Approved Activator DrugBank

NID1 Urokinase Approved Unknown DrugBank

MYC AVI4126 Phase I/II Antisense TTD

Eight therapeutic targets with examples of replicated known therapeutics for CAD in this study.

* Drugs shown are examples. More than one therapeutic drug may be associated with each replicated target; * Drug databases shown are examples. One drug-
target association may be described in more than one drug database. Abbreviations - PH - Phenotype; CAD - Coronary Artery Disease; TTD - Therapeutic Target
Database.

Figure 3 Novel therapeutic targets with approved drugs compared to targets with drugs in clinical trials. A total of 110 therapeutic
targets with approved drugs were identified which may benefit the CAD phenotype, with a further 74 novel therapeutic targets in clinical trials.
Therapeutic drugs in the overlapping set are approved for one phenotype, and also in clinical trials for a second phenotype.
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from the TTD database, targets plasminogen, PLG: a
predicted therapeutic target for CAD. Losartan, an
antagonist of the type 1 angiotensin receptor, AGTR1,
is another known CAD therapeutic retrieved from
DrugBank (Table 2). Thus, the system is capable of
replicating known therapeutics for CAD directly from
the genetic data.

Validation of predicted therapeutic targets
We used two different benchmarks to assess the validity of
targets predicted by Gentrepid for CAD. In the first bench-
mark, we validated association of targets with CAD based
on whether they are designated as known targets for CAD
in the drug databases or not. This was performed for all
six search spaces created (see Methods for details). In the
second benchmark, we retrieved the number of Pubmed
citations, citing both the phenotype of interest (CAD) and
the gene name to validate the association of the predicted
gene-target with CAD.
For the first benchmark, we classified genes in the

six search spaces as “CAD candidates” or “CAD non-
candidates”. Targets with known therapeutic drugs for
CAD were considered “true positives” (Table 3). Tar-
gets which were not predicted by Gentrepid, but pre-
sent in any of the six search spaces, and targeted by
currently registered therapeutics for CAD were consid-
ered as “false negatives”. Genes that were not predicted
for CAD and not targetable by CAD drugs were
regarded as “true negatives”, while Gentrepid-predicted
novel therapeutic targets for CAD were considered
“false positives” (Table 3). A ROC curve was plotted
considering targets present in the six search spaces
constructed for the weakly significant data set (Table 3
Additional file 1 - Figure S1(A)). The Area Under
Curve (AUC) value of these ROC curves was greater
than 0.5 (p < 0.05) suggesting that our predictions of
therapeutic targets for CAD are significant (Additional
file 1 - Figure S1(A)).
For the second benchmark, a ROC curve for CAD was

created by considering four thresholds for targets with
at least one, five, ten and fifteen Pubmed citations as
CAD true positives and targets with less than five, ten
and fifteen citations or without any citations as CAD

false positives (Additional file 1 - Figure S1(B)). Genes
with at least one, five, ten and fifteen article citations
not predicted by Gentrepid, but present in the search
space were considered as “false negatives”. Genes neither
cited nor predicted for CAD were regarded as “true
negatives”. The AUC value for this ROC curve was also
significantly greater than 0.5 (p < 0.05) ensuring that
our results are not generated by chance and our predic-
tions of therapeutic targets for CAD are significant
(Additional file 1 - Figure S1(B)).

Comparison with previous studies
In our previous bioinformatic analysis of the WTCCC-
GWAS data, we identified 102 of 264 predicted candidate
genes as therapeutic targets for CAD using only the CMP
and CPS modules [20]. In this study, we identified 192 of
647 Gentrepid-predicted candidate genes of CAD as ther-
apeutic targets using a total of five bioinformatic modules
- CMP, PPI, CPS, CRT and MIR. We compared the ther-
apeutic targets obtained for CAD in both studies and
observed that more than half (59%) of the therapeutic
targets were not identified previously (Figure 4A). In
total, 113 therapeutic targets were not identified in our
earlier study, and 79 therapeutic targets are common to
both studies (Figure 4A).
We also sought to understand how druggable the can-

didate genes predicted in the newer study, based on 5
bioinformatic modules, were compared to our older 2-
module study. Among the 647 candidate genes utilised
in this study, 204 candidates were replicated from our
previous study. We calculated a Targetability Index (TI),
the ratio of predicted therapeutic targets to predicted
candidate genes. Although 443 additional candidate
genes were predicted compared to our previous study,
the proportion of these that mapped to therapeutic tar-
gets, TI5, was lower (30%, n = 192) for the 5-module
study compared to the value, TI2, for the 2-module
study, (39%, n = 102) [20]. This is likely a selection
effect due to better knowledge of genes in pathway data-
bases compared to those modules based on the high
throughput data (PPI, CRT, MIR).
The novelty of the predicted therapeutic targets for

CAD was also compared between this study and our pre-
vious study. A novelty ratio was calculated as the ratio of
number of novel therapeutic targets i.e. those that have
not been previously associated with CAD, to the number
of predicted therapeutic targets for CAD [20]. The
novelty ratio in this 5-module study for CAD was 0.95
(184/192) roughly the same as our previous 2-module
study (0.96) (98/102) [20]. This suggests that the relative
number of repositioning opportunities did not decrease,
despite the yield of therapeutic targets going down when
the additional bioinformatic modules were added, as indi-
cated by the TI [20].

Table 3. Binary classification of targets present in six
search spaces

Known Drug Targets Novel Drug Targets

CAD candidates T.P. = 8 F.P. = 184

CAD non-candidates F.N. = 4 T.N. = 4,519

Σ 4,715

Binary classification of therapeutic targets considering six thresholds based on
therapeutic targets present in six search spaces constructed in weakly
significant data set (WS). Abbreviations: CAD - Coronary Artery Disease; TP -
True Positives; FP - False Positives; TN - True Negatives; FN - False Negatives.
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We also compared our results with the most powerful
meta-analysis of CAD which has yet been performed. The
CARDIoGRAMplusC4D study improved the statistical
power of the genetic analysis by increasing the number of
cases and controls by a factor of 10 over the original
WTCCC study. We mapped the 20 candidate genes for
CAD obtained in the CARDIoGRAMplusC4D study with
the extracted drug-gene target dataset and identified ten
therapeutic targets. Gentrepid independently predicted
two (PLG and FLT1) of the ten therapeutic targets
obtained using the CARDIoGRAMplusC4D study data
(Figure 5). Thus, the Gentrepid system was able to suc-
cessfully retrieve 20% of the therapeutic targets obtained
using the CARDIoGRAMplusC4D study data. To sum-
marize, our analysis showed that the system not only

replicated already known targets, but also made novel
valid predictions using existing biological and drug
knowledgebases.

Limitations
Although Gentrepid was able to predict a list of 981
potential novel therapeutics suitable for repositioning
towards treatment of CAD, further clinical trials are
required to confirm the efficacy of these novel therapeu-
tics. Repositioning opportunities will not always be suc-
cessful due to the complexity, variability and sparsity of
currently available data in the biological knowledge
bases, and to the intrinsic nature of genetic data [31].
However, one successfully repurposed drug can signifi-
cantly impact the drug development for a complex

Figure 4 Comparison of therapeutic targets and candidate genes obtained after reanalysing WTCCC-GWAS data in 5-module study vs
our previous 2-module study. A) Comparison of therapeutic targets for CAD obtained in the two different studies by utilizing different
number of bioinforamtic databases to reanalyse the same WTCCC-GWAS data. In this study, 79 therapeutic targets were replicated from the
previous study (Grover et al, 2014), and 113 additional therapeutic targets were identified; B) Comparison of predicted candidate genes obtained
by reanalysing the same WTCCC-GWAS data in the two different studies (Green crosshatched portion - Ballouz et al, 2011, Yellow crosshatched
portion - Ballouz et al, 2014). In our recently published study for CAD (Ballouz et al 2014), 204 candidate genes were replicated from the
previous study (Ballouz et al, 2011) and 443 additional candidate genes were identified (Ballouz et al, 2014). Abbreviation - CAD: Coronary Artery
Disease.

Figure 5 Comparison of Gentrepid predicted therapeutic targets based on WTCCC-GWAS data vs CARDIoGRAMplusC4D study data.
Comparison of therapeutic targets predicted from CARDIoGRAMplusC4D study data with predicted therapeutic targets from WTCCC-GWAS data.
The system identified two (PLG and FLT1) of ten therapeutic targets obtained from CARDIoGRAMplusC4D study data.
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disease [31]. The results presented here can accelerate
drug discovery programs for CAD by translation of
already known compounds for novel therapeutic uses
towards CAD. Overall, our pipeline is an appropriate
methodology for generating potential therapeutics for
CAD from GWAS data.

Conclusion
CAD is a complex trait that has a major impact on
human morbidity and mortality. Identification of poten-
tial therapeutic targets is necessary to develop novel
treatments for complex diseases like CAD. In this study,
we integrated known drug data with predicted candidate
genes for CAD. We found 30% (n = 184) of the predicted
candidate genes could serve as novel therapeutic targets,
and 14% (n = 981) of the retrieved drugs are potential
novel therapeutics for CAD. Novel therapeutics include
both FDA-approved drugs and drugs currently in clinical
trials. Hence, these drugs may be repositioned towards
treatment of CAD. The lower effect sizes of individual
loci and large number of predicted targets suggest that
cocktails of repositioned drugs may be therapeutically
effective. Thus, Gentrepid offers new directions in reposi-
tioning of already known drugs to discover novel-cost
effective treatments for CAD.

Additional material

Additional file 1: Known targets and ROC curves for CAD. Table S1 - List
of 30 known targets of CAD retrieved from drug databases, not
predicted by Gentrepid. Four of these 30 known targets of CAD are
present in all of the six search spaces. Abbreviations - ROC - Receiver
Operation Characteristics Curve; AUC - Area Under Curve. Figure S1 - A)
ROC curve for CAD based on six thresholds obtained from targets
present in six search spaces in weakly significant data set (WS) (AUC -
1.0). B) ROC curve for CAD based on four thresholds obtained using four
cut-off of Pubmed citations (at least one, five, ten and fifteen) (AUC -
1.0). Abbreviations - ROC - Receiver Operation Characteristics Curve; AUC
- Area Under Curve.

List of abbreviations
CAD: Coronary Artery Disease; CHD: Coronary Heart Disease; GWAS:
Genome-Wide Association Study; SNP: Single Nucleotide Polymorphism; TTD:
Therapeutic Target Database; PharmGKB: Pharmacogenomics
Knowledgebase; FDA: Food and Drug Administration; CPS: Common
Pathway Scanning; CMP: Common Module Profiling; WTCCC: Wellcome Trust
Case-Control Consortium; AUC: Area Under Curve; TI: Targetability Index;
ROC: Receiver Operation Characteristic curve; WS: Weakly Significant set;
MWS: Moderately-Weak Significant set; MHS: Moderately-High Significant set;
HS: Highly Significant set.
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