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Abstract

Background: Prostate cancer is one of the most common complex diseases with high leading cause of death in
men. Identifications of prostate cancer associated genes and biomarkers are thus essential as they can gain insights
into the mechanisms underlying disease progression and advancing for early diagnosis and developing effective
therapies.

Methods: In this study, we presented an integrative analysis of gene expression profiling and protein interaction
network at a systematic level to reveal candidate disease-associated genes and biomarkers for prostate cancer
progression. At first, we reconstructed the human prostate cancer protein-protein interaction network (HPC-PPIN)
and the network was then integrated with the prostate cancer gene expression data to identify modules related to
different phases in prostate cancer. At last, the candidate module biomarkers were validated by its predictive ability
of prostate cancer progression.

Results: Different phases-specific modules were identified for prostate cancer. Among these modules, transcription
Androgen Receptor (AR) nuclear signaling and Epidermal Growth Factor Receptor (EGFR) signalling pathway were
shown to be the pathway targets for prostate cancer progression. The identified candidate disease-associated
genes showed better predictive ability of prostate cancer progression than those of published biomarkers. In
context of functional enrichment analysis, interestingly candidate disease-associated genes were enriched in the
nucleus and different functions were encoded for potential transcription factors, for examples key players as AR,
Myc, ESR1 and hidden player as Sp1 which was considered as a potential novel biomarker for prostate cancer.

Conclusions: The successful results on prostate cancer samples demonstrated that the integrative analysis is
powerful and useful approach to detect candidate disease-associate genes and modules which can be used as the
potential biomarkers for prostate cancer progression. The data, tools and supplementary files for this integrative
analysis are deposited at http://www.ibio-cn.org/HPC-PPIN/.

Background
Prostate cancer is the second leading cause of morbidity
and mortality in men [1,2]. In recent years, the inci-
dence rate of prostate cancer has dramatically increased
[3], and this is largely because of lack of diagnosis and
treatment of the disease at the early stage [4]. Thus, the

successful clinical biomarkers for early diagnosis of the
presence of prostate cancer become very urgent to
reduce the death risk of the prostate cancer [5,6].
In the post-genomics era, there is an explosion of bio-

logical data and information generated from high-
throughput technologies which have rapidly provided an
unprecedented multi-level omics data [7]. Such tran-
scriptomics, referred to as gene expression profiling can
now comprehensively survey the entire human geno-
mics. Moreover, enormous efforts have been made to
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identify biomarkers for various cancers by the analysis of
different transcriptomics data [8-12]. As an example
reported by our previous study, integrative transcrip-
tomics data could be used to identify putative novel
prostate cancer associated pathways, such as Endothe-
lin-1/EDNRA trans-activation of EGFR pathway which
would provide essential information for development of
network biomarkers and individualized therapy strategy
for prostate cancer [11-13]. Looking at the other rele-
vant studies for cancer transcriptomics, a large scale
expression study presented by Wang et al. identified a
set of gene markers for prediction of metastasis for
breast cancer [14] and followed by Chari et al. demon-
strated an approach based on multiple concerted disrup-
tions (MCD) analysis and identified genes and pathways
in cancer [15]. Furthermore, transcriptomics could be
used to identify metabolic biomarkers through alterative
metabolic pathways at different cancer phases [16]. Con-
cerning on the other levels of omics, proteomics in con-
text of protein-protein interaction network could also be
used to characterize and diagnose a pathological process
[17]. As clearly reported by Ideker and Sharan [18], the
indicating genes as biomarkers in complex diseases tend
to cluster together on well-connected proteins interac-
tion sub-networks. In following years, Chuang et al. also
showed that it could be useful to extract co-expressed
functional sub-networks for metastasis of breast cancer
through integrating transcriptomics data with protein-
protein interaction to obtain higher classification accu-
racy [19]. Later, Taylor et al. studied the altered protein
interaction modularity to predict breast cancer progres-
sion by examining the biochemical structure of the
interactome [20]. Besides, there were similar studies for
analysis of sub-networks and/or hub proteins which had
been helpful for the understanding of the metastasis of
cancer at the molecular level [18].
Focusing on prostate cancer, there were some reports on

identifying disease-related gene modules, sub-networks or
dysfunctional pathways focused on global characteristics
of interactome together with gene expression data by dif-
ferent novel algorithms and methods development
[21-23]. Nonetheless, there are still few studies on identifi-
cation of prostate cancer biomarkers for early detection of
the presence as well as disease progression [20]. The rela-
tionships among the potential prostate cancer genes and
associated functions as well as pathways are still poorly
characterized, such as how they interacted and regulated
with each other, also what they act within the network
modules. These investigations are warranted for a compre-
hensive understanding of the molecular mechanisms
underlying prostate cancer progression. Hence, it is a chal-
lenge to perform an integrative analysis of different data,
which can be gene expression profiling, protein-protein

interaction (PPI) data, pathway information, and clinical
information, that can offer different perspectives on the
biological problems in prostate cancer and further identifi-
cation of potential biomarkers [24,25].
In this study, we therefore aim to reveal candidate dis-

ease- associated genes and biomarkers for prostate can-
cer progression by integrative gene expression profiling
and network analysis at a systematic level. We first
reconstructed human prostate cancer protein-protein
interaction network and used this network as a scaffold
for further integrative analysed with gene expression
data of prostate cancer. Here, analysis of gene expres-
sion profiling of prostate cancer was performed at differ-
ent disease phases. Through modular analysis, the
different modules associated with disease phases were
then identified. Last but not least, we could identify sig-
nificant genes through these modules which were sup-
posed to be the gene expression signatures with highly
relevant to specific phases of prostate cancer. Once the
common genes identified in each of different modules
were overlapped, expectedly these common genes were
beneficial for uncovering of novel prostate cancer-
related pathways and transcription factors which could
be candidate biomarkers for prostate cancer progression.
Our study hereby demonstrated a practical workflow for
integrative analysis of prostate cancer at the systematic
level. For the genome-wide studies, this will be a basic
effort for future development and evolution in aspects
of the translational biomedical informatics, which ulti-
mately intend to improve patient outcomes and diagnos-
tics with omics dataset through integrative systems
biology [26].

Methods
Human prostate cancer protein interaction network
reconstruction and annotation
The human prostate cancer protein-protein interaction
network (HPC-PPIN) was initially reconstructed in
order to be further used for integrative analysis as a dia-
gram illustrated in Figure 1. To reconstruct the HPC-
PPIN, we used two different types of datasets. The first
dataset was the genes associated in prostate cancer
derived from a collection of prostate cancer databases
and other relevant resources (e.g. Dragon Database of
Genes associated with Prostate Cancer (DDPC) [27],
GeneGo [28], OMIM [29], KEGG [30], PGDB [31],
CCDB [32], and Gene Ontology (GO) [33]).
For the second type of the dataset, it was the human

protein-protein interactions data (Homo sapiens) which
was downloaded from the BioGRID database [34]. Con-
cerning on annotation of the HPC-PPIN, we used the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) system [35,36]. At the beginning,
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functional annotation clustering tool of DAVID system
was applied to group annotated genes within HPC-PPIN
across three GO processes underlying molecular func-
tion, biological process, and cellular component. Among
three GO processes, this tool was then used to identify
the enriched GO terms. In order to annotate detailed
functions in context of pathways underlying metabolism,
cellular process, environmental information process and
genetics information process, KEGG database was used
(http://www.genome.jp/kegg/pathway.html).

Prostate cancer gene expression data collection and
analysis
The gene expression profiles based different platform
arrays from different stages of prostate cancer (i.e. disease
stages I, II, II, IV) were collected from various laboratories.
Table 1 lists available information of collected gene
expression profiles (431 samples) of prostate cancer pro-
gression. Since only fewer samples are available in stage I
than other disease stages, stages I and II were combined
into one phase (Table 1). All expression datasets were

Figure 1 The modular analysis pipeline. Diagram shows identification of candidate disease-associated genes as potential module biomarker
based on integrative analysis of the reconstructed human prostate cancer protein-protein interaction network (HPC-PPIN) and the different
phases of gene expression profiles of prostate cancer. The threshold for greedy algorithm via Cytoscape jActiveModules (jAM) plugin for the
most significant core sub-networks analysis in each gene expression profile was set to three iterations and top ten ranks.
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analysed for gaining statistics values. The statistical pro-
cessing methods were invoked through the limma (Linear
Models for Microarray Data) package in R [37,38] and
scripting under R version 2.9.0 (R Development Core
Team). The limma package [37] was applied to perform
moderated Student’s t-test between all possible pairwise
disease phases comparison i.e., early-middle phases, mid-
dle-late phases, and early-late phases, to determine signifi-
cantly differential gene expression. Empirical Bayesian
statistical method was applied to moderate the standard
errors within each gene and then the Benjamini-Hoch-
berg’s method was applied to adjust the multi-testing [39],
as well as to obtain the adjusted p-value.

Modular analysis for prostate cancer progression
In order to perform modular analysis for study of dis-
ease progression, three main steps were necessarily per-
formed. At the first step, the analysed gene expression
data previously derived from pairwise disease phase
comparison of prostate cancer was integrated with the
reconstructed HPC-PPIN. Hereafter core sub-networks
analysis and overlapping analysis as second and the
third steps were then performed, respectively. Regarding
on the core sub-networks analysis, they were investi-
gated for which were shown highly active scores and
top ranks based on the greedy algorithm. In this investi-
gation, the greedy algorithm was selected for searching
the core sub-networks in a large network of interactions
from any pairwise disease phases comparison, where
refers to a connected sub-graph of the interactome that
has high significance of differential expression values
[19]. To elaborate how the greedy algorithm used, ori-
ginally the adjusted p-value derived from any pairwise
disease phases comparison was converted to the readily
form of z-score by using the inverse normal cumulative
distribution (θ-1) for scoring and ranking [40]. After-
wards the greedy algorithm by jActiveModules (jAM)
plug-in as implemented in the Cytoscape [41,42] was

used to investigate and extract the significant core sub-
networks under threshold of three iterations and top ten
ranks. Through the end, the list of top ten ranks were
merged together to gain a final core sub-network which
represented for each of pairwise disease phases compari-
son and for each of gene expression profile. Notably,
jAM was chosen as a basis for this investigation because
it is a fashionable method, based on a survey of the cur-
rent literature. There are several successful cases where
jAM has been applied to extract the significant core
sub-networks, for examples in fruit fly Drosophila [43],
yeast S. cerevisiae [44], worm C. elegans [45] and
human H. sapiens [19,46].
To finalize the modular analysis, the overlapping analysis

was carried out. The overlapping analysis at gene level was
applied to show the number of enriched genes shared by
all gene expression profiles (see Table 1) calculated based
on core sub-networks analysis. For example, considering
each of a final core sub-network retrieved from each of
pairwise disease phase comparison analysing across all
gene expression profiles, the overlapping percentage of
genes was calculated between any two of the final core
sub-networks derived from any two of the gene expression
profiles. For the formula of the overlapping analysis, we
defined the number of genes
in the final core sub-network1 as (CS1) and the final

core sub-network2 as (CS2). The overlapping percentage
between the final core sub-networks was designated as
the number of overlapping genes (G) divided by the
number of genes in the union of (CS1) and (CS2) with
subtracted (G). It can be calculated as follows in follow-
ing formula (1):

Overlapping percentage =
G

CS1 + CS2 − G
× 100% (1)

After overlapping analysis, as a result the overlapping
percentage across all gene expression profiles was
obtained for each of pairwise disease phase comparison.

Table 1 Gene expression profiles of prostate cancer used for integrative analysis#

No. Exp. Platform No. Probes Samples Series No. Samples of prostate cancer stages References

NAP BN PCA MET

(I) (II) (III) (IV)

Early phase Middle phase Late phase

Exp-1 Affymetrix HG-U133P2 GPL570 54,675 GSE3325 0 6 7 6 [76]

Exp-2 cDNAChinnaiyan Human 20K Hs6 GPL2013 20,000 GES6099 0 15 32 20 [77]

Exp-3 Agilent-014850 4x44K G4112F GPL4133 45,220 GSE27616 0 2 5 4 [78]

Exp-4 Affymetrix HG-U133A GPL96 22,283 GSE3868 2 0 22 0 [79]

Exp-5 Affymetrix HGU95A - 12,626 - 9 0 25 0 [80]

Exp-6 Affymetrix HG-U133P2 GPL570 54,675 GSE17951 0 45 109 0 [81,82]

Exp-7 Agilent-014850 4x44K G4112F GPL6480 GSE28204 0 4 4 0 [83]

Exp-8 Affymetrix HG_U95Av2 GPL8300 12,625 GSE6919 18 0 65 25 [84,85]

#Abbreviations: NAP: normal prostate samples, BN: benign samples, PCA: primary prostate cancer samples, MET: metastatic prostate cancer samples
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Towards all possible pairwise disease phases comparison
(i.e. early-middle phases, middle-late phases, and early-
late phases), three different modules associated with dis-
ease progression were eventually identified. It is very
possible that each of these three modules plays impor-
tant roles in dynamic changes of molecular interactions
at a specific phase of the disease progression. The iden-
tified unique genes in each module were regarded as
signatures at a specific phase of prostate cancer. The
identified common genes in all three modules were
regarded as candidate disease-associated genes.

Identified candidate prostate cancer associated genes as
putative module biomarker
To validate the identified prostate cancer associated genes
as putative module biomarker, we used them as a module
biomarker to discriminate between control and prostate
cancer samples. Support vector machine (SVM) regression
proposed by Cortes and Vapnik [47] was selected due to
its attractive features and high performances [48-50] for
applying to the expression values of the predicted prostate
cancer associated genes from the module biomarker to
distinguish prostate cancer from controls. The Receiver
Operating Characteristic (ROC) curve and the area under
curve (AUC) were used to evaluate the efficiency of classi-
fication [51-53]. Two R packages, namely kernlab [54] and
ROCR [55], were applied to build the SVM classifier and
produced the ROC curves.

Validation of candidate prostate cancer associated genes
by statistical methods
For the validation of candidate prostate cancer associated
genes, known related genes obtained from the Cancer
Gene Census database [56] (accessed on December 6,
2012), Genetic Association Database (GAD) [57] (accessed
on October 27, 2012) and AnimalTFDB [58] (accessed on
December 7, 2012) were used. A hypergeometric test was
applied to estimate the enrichment of these candidate
prostate cancer associated genes compared to the known
cancer related genes. The equation of the hypergeometric
test is shown as follows in (2):

P(X ≥ x) = 1 −
x−1∑
k=0

(
M
k

)(
N − M
n − k

)
(
N
n

) (2)

In the above equation, N and M represents the number
of genes in the expression profiles and the number of
known cancer genes respectively, n and k are the number
of the candidate prostate cancer associated genes that we
identified, and the number of common entries between
them, respectively. P represents the statistical significance
of the enrichment. Random sampling was used to test the
statistical significance and the same number of known
cancer genes was randomly selected from Cancer Gene
Census database [56], Genetic Association Database
(GAD) [57] and AnimalTFDB [58] to assess the statisti-
cally significance of these known cancer genes included
in the previous results. At first, the same number of
genes as the candidate prostate cancer associated
genes was randomly selected from the reconstructed
HPC-PPIN. Subsequently, the number of known cancer
genes included in the random samples was then counted.
Afterwards, random sampling was repeated 106 times.
Then, the p-value of the candidate prostate cancer asso-
ciated genes was defined as the probability that one ran-
dom sampling might contain a greater or equal number
of known cancer genes than in our study samples.

Functional and pathway enrichment analysis
The GeneGo, which is a commercial integrated knowl-
edge database [59], was used for analysis of functional
and pathway enrichment. The statistical significance
value was calculated using hypergeometric distribution
and false discovery rate (FDR) method (p value < 0.05).

Results and discussion
Reconstructed HPC-PPIN and its functional annotation
The HPC-PPIN was reconstructed from different prostate
cancer databases and other relevant resources along with
one directional interaction and repeat interactions removed,
hereafter resulting in 5,827 interactions among 1,100 pro-
teins. The characteristics of the reconstructed HPC-PPIN
are shown in Table 2. Additional file 1(Figure S1)
illustrates the distributing numbers of prostate cancer-
related genes from different databases with assigned and
unassigned in HPC-PPIN.
Concerning on the annotated functions of HPC-PPIN in

DAVID system, we found that the major of GO terms
involved in biological process (36.78%) as illustrated in
Figure 2. Considering to KEGG categories, we found that
the major annotated functions were involved in genetics

Table 2 Number of genes, proteins and interactions between pairwise disease phases comparison#

Features Early-Middle phases Middle-Late phases Early-Late phases

Number of proteins in the reconstructed HPC-PPIN 1,100 1,100 1,100

Number of genes within analyzed modules 217 193 266

Number of interactions within analyzed modules 1,832 1,564 1,787

bNumer of candidate disease-associated genes 94 94 94

#Abbreviations: HPC-PPIN: Human prostate cancer protein-protein interaction network
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information process in the category of transcription regula-
tion (41%). The results are shown in Figure 3. The recon-
structed HPC-PPIN with annotated functions is shown in
Additional file 2. A graphic representation of HPC-PPIN
by Cytoscape [42] is presented in Additional file 3.

Modules involved in prostate cancer progression
As described in modular analysis for prostate cancer pro-
gression (Section in Materials and Methods), three differ-
ent modules were obtained. The results are shown in
Figure 4. As presented in the Table 2, noticeably the

third module underlying early-late phases comparison
contained the maximum number of genes (266 genes), in
contrast to the second module underlying middle-late
phases comparison contained the minimum number of
genes (193 genes). This suggests that the third module
has additional gene expression signature changes (82
genes) than the other two modules identified for 56
genes in the first module and 30 genes in the second
module. These can be explained that cancer cells possibly
develop new mechanisms and regulations for cell prolif-
eration from an initial stage and further enhance tumour
metastasis with degenerative disease. Additional file 1
(Table S1) lists all unique gene expression signatures
identified in each module.
To further elaborate functions of unique gene expression

signatures, literature search using PubMed was performed.
Our finding clearly showed that unique gene expression
signatures play important roles in progression of prostate
cancer at a specific phase. For examples, SMAD3 and
TGFB2 were reported as androgen- independent prostate
cancer-specific genes [60] which were found in a specific
expression of early-late phase. In addition, there were more
unique gene expression signatures in early-late phase, for
instances PTEN, BRAF, DDX5, NCOA4, WHSC1,
CCND2, CDH11, ERCC5, FANCD2, LIFR, MAF, RAF1,
and TOP1. Examples of unique gene expression signatures

Figure 2 Annotated functions for the reconstructed HPC-PPIN
using DAVID system. Pie-chart shows different frequencies of
three GO processes distributing into HPC- PPIN.

Figure 3 Annotated functions for the reconstructed HPC-PPIN using DAVID system. Bar graph presents different functional classifications
distributing into HPC-PPIN based on KEGG categories.

Li et al. BMC Medical Genomics 2014, 7(Suppl 1):S3
http://www.biomedcentral.com/1755-8794/7/S1/S3

Page 6 of 15



in middle-late phase, we found TP53 and RB1 which were
reported as tumour suppressor genes. Growing evidences
were also shown in transcription factor, such as STAT3
which was identified only in early-middle phase.
Regarding on pathway enrichment analysis associated

in prostate cancer, interestingly Transcription Androgen
Receptor nuclear signaling was found to be the enriched
pathway as illustrated in Figure 5. Obviously, Transcrip-
tion factor AR plays an important role in Transcription
relationship which was found in all three modules and
appeared to be a hub for regulating a lot of genes in

this pathway. We also showed the other enriched path-
ways as shown in Additional file 1 (Fig. S2), for example
Development Epidermal Growth Factor Receptor
(EGFR) signaling pathway as presented in Additional file
1 (Fig. S3). As known, EGFR signalling pathway regu-
lates cell proliferation, cell differentiation, cell cycle, and
cell migration. Undoubtedly, EGFR pathway therefore
becomes a part of a complex network that has been an
interested target for effective cancer therapies [61,62].
From this study, the results also showed consistency
with our previous work [12].

Figure 4 The interaction network of three modules obtained from modular analysis for prostate cancer progression. The highlight
interactions within the 94 candidate disease-associated genes identified in all three phases were obtained. The red node indicates cancer-related
genes in Cancer Gene Census database. The green node indicates prostate cancer- related genes in GAD database. The blue node indicates no
support information from database.
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Candidate disease-associated genes in prostate cancer
progression and their statistical significance
In order to identify candidate disease-associated genes in
prostate cancer progression, the gene members in each
module were overlapped among three modules. With
repeat interactions removed, 94 genes were found as the
common members and regarded as the candidate dis-
ease-associated genes (see Figure 3 and Table 2). For
biological interpretation, functional enrichment analysis
of our candidate disease-associated genes was conducted
using GeneGo [28]. Based on different sub-cellular loca-
lizations, namely extracellular, membrane, cytoplasm,

and nucleus, a major fraction of 94 candidate disease-
associated genes was enriched in the nucleus and differ-
ent functions were mostly encoded for transcription
factors as illustrated in Figure 6.
Additionally, we compared the candidate disease-asso-

ciated genes with public databases as shown in Table 3. As
a result, 23 out of 94 genes were found in Cancer Gene
Census database, and 22 out of 94 genes were identified as
prostate cancer- related genes from GAD, as well as 18
out of 94 genes were recognized as transcription factors
from AnimalTFDB. Concerning on high degree of interac-
tions (≥10 interacted genes), 15 out of 23 genes (65.2%)

Figure 5 GeneGo graphic representation illustrates Transcription Androgen Receptor (AR) nuclear signaling. Pathway regarded as the
enriched significant pathway associated in prostate cancer progression. Transcription factor AR was identified as a hub protein to play a critical
role in prostate tumorigenesis and prostate cancer progression.
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were found to be hubs when Cancer Gene Census data-
base was used. For other databases, GAD and Ani-
malTFDB showed 18 out of 22 genes (81.8%) and 12 out
of 18 genes (66.7%) were found to be hubs, respectively.

These results suggest that cancer-related genes and tran-
scription factors likely showed to be the hub genes. In
addition, self-interacting genes tended to be cancer-related
genes and transcription factors (shown in Figure 4).

Figure 6 GeneGo graphic representation for module biomarker. It shows a major fraction of 94 candidate disease-associated genes which
was enriched in the nucleus and different functions were mostly encoded for transcription factors.
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As evidences subsequently presented, 32 out of 94 genes
as self-interacting genes were found to be 10 cancer-
related genes based Cancer Gene Census database, 9 pros-
tate cancer-related genes based GAD, and 9 transcription
factors based AnimalTFDB.
To further assess statistical significance of 94 candi-

date disease-associated genes, the Cancer Gene Census
database [56], GAD [57], and AnimalTFDB [58] were
also used. 23 out of 94 genes underlying 488 genes
which have been reported to be related to cancer in
Cancer Gene Census database [56], we further investi-
gated whether these genes could be randomly obtained.
Statistical significance was checked using hypergeo-
metric distribution and 106 times random simulation.
The results showed that two significant p-values of 6 ×
10-4 and < 3 × 10-4 were obtained, respectively. These
indicate that the candidate cancer genes are enriched
among known cancer-related genes and cannot be
obtained randomly. For GAD [57], 22 out of 94 genes
underlying 309 genes reported to be related to prostate
cancer. The statistical significance was similarly checked.
Two significant p-values of 7 × 10-3 from a hypergeo-
metric distribution and7 × 10-3 from random simulation
were obtained. Once using the AnimalTFDB [58],
18 out of 94 genes underlying 1,457 genes, which have
been reported to be related to transcription factors.
Statistical significance was similarly checked. As a result,
two significant p-values of 9 × 10-3 and 7 × 10-3 were
obtained with a hypergeometric distribution and random
simulation, respectively.

Validation of candidate disease-associated genes
regarded as potential module biomarker
To further validate the ability of the candidate disease-
associated genes to distinguish cancer samples from con-
trols, the gene expression dataset in series of GSE6919 for
prostate cancer obtained from GEO database (http://www.
ncbi.nlm.nih.gov/geo/) and the independent gene expres-
sion dataset [63] were used as the tested datasets. Here,
we hypothesized that if our candidate disease-associated
genes can successfully distinguish cancer samples from
control samples in these tested datasets, they can be
further shown to be related to prostate cancer and
regarded as a potential module biomarker. Moreover, we

compared our results with those obtained with a public
biomarker set for prostate cancer [64], which were derived
from differential gene expression. Five-fold cross valida-
tion was used to assess the performance based on different
biomarkers and the SVM regression was used as the classi-
fier. Figure 7 and 8 show the ROC curves obtained with
our candidate disease-associated genes as module biomar-
ker and known biomarkers individually for these two
tested datasets. In addition, we also show AUC (area
under curve) to provide the statistical summary of the per-
formance of the classification over the entire range of sen-
sitivity and specificity. In Figure 7, for the GSE6919 gene
expression dataset, our module biomarker shows AUC of
91.44% and known biomarkers show AUC of 84.05%. In
Figure 8 for the independent gene expression dataset [63],
our module biomarker and known biomarkers show AUC
of 92.85% and 86.45%, respectively. These results confirm
that our identified putative prostate cancer associated
module biomarker performs well with respect to the
known biomarkers; therefore it could be potentially
applied to predict prostate cancer progression.

Transcription factor Sp1 as a novel biomarker for
prostate cancer
Towards candidate disease-associated genes as the poten-
tial module biomarker, interestingly, we found 18 key
transcription factors which had a major fraction involved
in Transcriptional regulation. Accordingly, it is possible
that these key transcription factors probably regulate a
large number of genes and are called potential candidates
to be biomarkers for prostate cancer. This is based on
the concept that transcription factors are the drivers of
the potential regulation of genes in prostate cancer, and
thus are relevant for use as biomarkers [65].
In order to identify potential candidates to be biomar-

kers for prostate cancer, we initially mapped 94 candidate
disease-associated genes to GeneGo which invoked an
appropriate algorithm to build networks relevant to active
data, such as our gene list in a straightforward manner
depending on the task. Later, we chose Transcription
regulation workflow from GeneGo which generated sub-
networks centred on transcription factors. Sub-networks
were then ranked by p-values and interpreted in terms
of gene ontology. Afterwards, a few of sub-networks

Table 3 Summary of statistical significance of candidate disease-associated genes in prostate cancer progression#

Database Known reported genes Genes in the HPC-PPIN Candidate disease-associated genes HD, RS
(P-values)

Cancer Gene 488 129 23 6 × 10-4,

Census <3 × 10-4

GAD 309 (prostate cancer only 155 22 7 × 10-3, 7 × 10-3

AnimalTFDB (Transcription factors) 1,457 121 18 9 × 10-3, 7 × 10-3

#Abbreviations: HD: Hypergeometric Distribution, RS: Random Sampling
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Figure 7 ROC curves are obtained with our module biomarker and known biomarkers. The gene expression dataset (series of GSE6919)
from GEO database (www.ncbi.nlm.nih.gov/geo//)

Figure 8 ROC curves are obtained with our module biomarker and known biomarkers. The independent gene expression dataset[75]. AUC
means area under curve and ROC means receiver operating characteristic.
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containing receptors with direct ligands from our datasets
and their closet transcription factors that directly targeted
the objects with these datasets were generated. To the
end, we could identify potential transcription factors
regarded as candidates to be biomarkers for prostate
cancer which had a Transcription regulation relationship
with the regulated candidate disease-associated genes.
Successfully, we found Myc, AR, ESR1 and p53 as

potential transcription factors which were possibly
regarded as biomarkers for prostate cancer as shown in
Additional file 1 (Figure S4) [66-69]. Surprisingly, our
identification showed that Specificity Protein 1 (Sp1) was a

hidden key transcription factor involved in regulation of
gene expression in early development of human prostate
cancer [70]. We found that transcription factor Sp1
directly regulated a lot of candidate disease- associated
genes, and also had indirect effect with the remaining
genes. The result shows in Figure 9. Focusing on prostate
cancer studies, several reports have shown that transcrip-
tion factor Sp1 regulates some important genes like
androgen receptor (AR) and TGF-b [71-73]. Moreover,
transcription factor Sp1 has also been found as a new bio-
marker that could identify a subset of pancreatic ductal
adenocarcinoma with aggressive clinical behaviour. It can

Figure 9 GeneGo graphic representation illustrates transcription factor Sp1 as a potential novel biomarker of prostate cancer. Sp1 is a
hidden key transcription factor which directly regulates a lot of candidate disease-associated genes, and also has indirect effect with the
remaining genes.
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be used at initial diagnosis of pancreatic adenocarcinoma
to identify patients with an increased probability of cancer
metastasis and much shortened overall survival [74]. As
many articles reported that transcription factor Sp1 plays
an important role with clinical behaviour and it is identi-
fied as a hub around different transcriptional changes. We
therefore propose that transcription factor Sp1 is probably
a novel candidate diagnosis biomarker related to prostate
cancer. We expect that the future application of transcrip-
tion factor Sp1 as a biomarker for prostate cancer may
improve clinical management.

Conclusions
In summary, we proposed an integrative analysis based
on the gene expression profiles and the reconstructed
protein-protein interaction network for prostate cancer,
in contrast to the conventional methods of examining
differential genes expression or proteins expression. In
particular, this study was more intensive analysis on
modular analysis for investigating the progression of dif-
ferent disease phases of prostate cancer. The achieved
significant modules resulted in the identification of the
candidate disease-associated genes which were conse-
quently regarded as potential module biomarker. It can
be effectively used as the promising feature to distin-
guish between control and disease samples. Regarding
on functional analysis of candidate disease-associated
genes, interestingly a major fraction of genes was
enriched in the nucleus and different functions were
encoded for transcription factors. Concerning on path-
way enrichment analysis, Transcription Androgen
Receptor (AR) nuclear signaling and Epidermal Growth
Factor Receptor (EGFR) signalling pathway were clearly
shown to be the pathway targets for prostate cancer
progression. Transcription factor AR plays an important
role in Transcription relationship and acts as a hub for
regulating a lot of genes in the Transcription AR
nuclear signaling. EGFR signalling regulates cell prolif-
eration, cell differentiation, cell cycle, and cell migration
and therefore it has been a potential interested target
for effective cancer therapies. Last but not least, we suc-
cessfully found an interesting transcription factor Sp1
which could be regarded as a potential novel biomarker
for prostate cancer. For a future work, we will further
study the experimental validation of potential disease
genes and pathways during prostate cancer progression.
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