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Abstract

problems can be automatically detected and resolved.

Background: Measurement-unit conflicts are a perennial problem in integrative research domains such as clinical
meta-analysis. As multi-national collaborations grow, as new measurement instruments appear, and as Linked Open
Data infrastructures become increasingly pervasive, the number of such conflicts will similarly increase.

Methods: We propose a generic approach to the problem of (a) encoding measurement units in datasets in a
machine-readable manner, (b) detecting when a dataset contained mixtures of measurement units, and (c)
automatically converting any conflicting units into a desired unit, as defined for a given study.

Results: We utilized existing ontologies and standards for scientific data representation, measurement unit
definition, and data manipulation to build a simple and flexible Semantic Web Service-based approach to
measurement-unit harmonization. A cardiovascular patient cohort in which clinical measurements were recorded in
a number of different units (e.g, mmHg and cmHg for blood pressure) was automatically classified into a number
of clinical phenotypes, semantically defined using different measurement units.

Conclusions: We demonstrate that through a combination of semantic standards and frameworks, unit integration

Background

Integration, comparison and interpretation of quantita-
tive data require, as a first step, that all measurements
are represented in the same units. Discordance in units
is common in integrative research, is difficult to detect,
and has severe consequences when not managed effec-
tively. Even NASA has made serious and expensive
errors by failing to detect and account for measure-
ment-unit conflicts[1].

This problem is well-recognized in clinical research,
due to its complex, multi-dimensional and heteroge-
neous nature, and where highly disparate datasets, often
from non-coordinating groups, need to be brought
together. This work, therefore, is contextualized within a
clinically-oriented study in which we would be required
to gather clinical data from a number of participating
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groups, and attempt to automatically categorize indivi-
dual patients over existing health-risk guidelines using
semantic technologies[2]. Prior to undertaking the
study, we became aware of the potential for measure-
ment unit conflicts in these integrated datasets. Rather
than creating an ad hoc solution, we attempted to define
a lightweight, standards-compliant, and semantics-based
solution that could be re-used by other bio/medical
research projects.

It should be noted that, in the current work, it was
not our intention to propose novel epistemic theories of
qualities and measurements as it is both beyond the
scope of our present work, and not necessarily required
to achieve our major objectives in the current study
which was to focus on providing practical and opera-
tional solution for clinicians and other health research-
ers using existing standards and theoretical frameworks.
The reader more interested in detailed core theoretical
foundations on which this study (and many existing
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ontologies such as DOLCE) is based, is referred to
(among others) [3-5].

The rest of this paper is organized as follows. We will
explain the challenges associated with formal measure-
ment-unit representation and integration in the Seman-
tic Web, and discuss related tools and resources. We
describe possible design-choices for modeling units, and
the problems or benefits of these alternatives. We then
discuss our proposed framework, and justify the core
design and representation choices through presentation
of a case study of patient phenotype classification within
the cardiovascular domain. Finally, concluding remarks
together with future extensions will be presented.

Related work

Various standards exist for unit representation, the most
notable of which (in the Western world) is the Interna-
tional System of Standards (SI), now adopted in all areas
of science[6]. Nevertheless, the choice of units, even
within this system, is sufficiently broad that reliable
automated integration of quantitative measurements
remains problematic [7], and as a result, a consistent
methodology to interpret and integrate the units within
and between datasets remains to be established.

Recently, semantic solutions in the form of measure-
ment unit ontologies have emerged as a potential path
towards a solution. These ontologies generally use the
Resource Description Framework (RDF) [8] for data
encoding and Web Ontology Language(OWL)[9] to
encode axioms that can be used for automated inference
over the data. However, while defining standards for the
representation of numerical/quantitative data, the RDF
standard does not inherently define an approach to
representing the measurement units associated with that
data [10]. Additionally, these ontologies are often
domain-specific, and therefore have limited coverage of
the full range of measurement units - focusing only on
units relevant to that domain of investigation - and lack
informative relationships between related units. For
instance, the GALEN concept MilligramPerDecilLiter, is
defined as a subclass of the concepts ConcentrationlUnit,
however it lacks any indication that this unit is com-
posed of combination of two base units (gram and liter)
and two prefixes (milli and deci).

Recently, ontologies have been developed to more
generically address formalizations of unit representation
and integration. Prominent examples of such ontologies
are the Measurement Unit Ontology (MUO)[10], Ontol-
ogy for Engineering Mathematics(EngMath)[11], Quanti-
ties, Units, Dimensions and Types (QUDT)[12], and the
Ontology of Units of Measure (OM) [13]. Their salient
features are (for a more comprehensive review please
refer to the [14]):
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MUO: In MUO, complex measurement units can be
derived from the base ones in a modular fashion. MUO
proposes a convenient framework for defining new units
of measurements in terms of existing ones. However,
while MUO defines metric prefixes (e.g., centi- and kilo-),
which could be used to automate automated conversion
for SI-based measurements, it lacks quantitative or
formula-based definitions for converting between SI units
and similar qualities in other unit-systems (e.g., inch
and cm).

Ontology for Engineering Mathematics(EngMath):
EngMath is an ontology for mathematical modelling in
engineering, written in Ontolingua[15]. It provides concep-
tual foundations for representing mathematical and physi-
cal entities such as scalars, vectors, tensors, physical
quantities, physical dimensions and units explicitly designed
for knowledge sharing applications in engineering [11].

Regarding the unit representation problem, the main
feature in EngMath (absent from MUO) is the compo-
nent “physical dimensions”. The physical dimension of a
quantity is an abstraction of a quantity ignoring magni-
tude, sign and direction aspects[13]. The dimension of a
quantity can be thought of as independent set of base
dimensions[13]. For instance the quantity Body Mass
Index (BMI) has the dimension that can be decomposed
into base dimensions mass and length: p]—2. The base
dimensions in SI systems are length (L), mass (M), time
(T), electric current (I), temperature (K), amount of sub-
stance (N) and luminous intensity (J).

EngMath (as opposed to MUO and UO) provides the
enough semantic information to convert many unit-
pairs of the same dimension that are either defined as
basic units or composed from the basic units[16]. The
key limitation of EngMath for our purposes is that it is
not available in OWL. This problem is addressed in two
more recent ontologies QUDT and OM that use a simi-
lar conceptual framework.

QUDT: QUDT defines “quantity dimensions” which
allows for automatic consistency checking of different
quantities. QUDT also includes several major unit-sys-
tems such as the CSG system of Units, SI and others
[17], but relates all other unit systems back to SI using
two data properties - “conversion offset”, “conversion
multiplier” - that could enable automated conversion
between any non-SI-based unit and its SI-based equiva-
lent. In terms of coverage for base units QUDT is fairly
comprehensive; however it lacks a number of derived
units (e.g., the centimeters of mercury column com-
monly used for clinical measurements of blood pres-
sure); however it provides the framework within which
these units could be created.

OM: OM and QUDT are similar in terms of high level
design features and hence we only discuss the key
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differences. One notable difference, is that OM defines
“Quantity kinds” (e.g., acceleration and absorption) as
OWTL classes, which facilitates logical reasoning [13].
Another advantage of OM -over QUDT- is that it uses the
SI prefixes to relate submultiples (e.g., deci) and multiples
(e.g., deca) of units. Additionally, OM defines the relation-
ship between compound units (e.g., kilogram per cubic
meter) and their individual constituents (kilogram and
cubic meter). Moreover, “compound units” is further
divided into “unit division” (e.g., meter per second), “unit
exponentiation” (e.g., meter squared) and “unit multiplica-
tion” (e.g., meter kilogram). For instance, for the unit
“millimole per cubic centimeter” (mmol/cm3), the nomi-
nator and denominator are defined as “millimole” and
“cubic centimeter”, respectively, where millimole is related
to mole by Prefix milli (om:factor = 1e-3) while “cubic
centimeter” is an instance of “unit exponentiation”. This
additional feature in OM allows for the automated calcula-
tions of dimensions for new units in based on their consti-
tuents. Figure 1 shows the model for “cubic centimeter”,
revealing the relationship between OM classes that enable
automated reasoning and unit inter-conversion.

In addition to above advantages, OM provides Web
Services that can be used programmatically to incorpo-
rate knowledge in OM in other applications making it
suitable for our study.

Methods

Dataset and data collection

The dataset used for these investigations included the clin-
ical records of a cardiovascular patient cohort collected
from a referral hospital in Nebraska, USA, between 1986
and 1989, including 536 unique patients. Table 1 shows
some columns from two rows of the dataset used in this
study. The intended meaning of acronyms for each col-
umn header (e.g., SBP for Systolic Blood Pressure) was
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confirmed with the clinician who had originally collected
the dataset. In the last four columns “1” represents “high
risk” and “0” represents a “low risk” for the condition listed
in the header.

As shown in the table, this dataset exhibited several
features that presented significant challenges to auto-
mated integration and annotation and that are common
with legacy (and even contemporary) clinical data,
including:

1) The measurement-units were not represented
explicitly.

2) Different rows of the same data set were repre-
sented in different measurement units shown in dif-
ferent colors. For instance, HDL is represented in
milligram/deciliter (Italic font) in the first row and
in mmol/liter (Italic font) in the second row shown
in different colors)

3) The system of units used, even in the same row,
could change (e.g., height in SI and weight in Imper-
ial units in the first row).

These observations highlight the need for a practical
solution to ameliorate the problem of measurement-unit
conflict resolution in health care.

Data transformation

Ontologies and standards used

OM: As stated, OM provides a rich conceptualization of
the compound units common in clinical data, we
selected OM as our preferred unit-ontology starting
point.

GALEN: GALEN [18] is a rich compositional ontology
of the medical domain, covering anatomy, function, dis-
eases, symptoms, drugs, and procedures. Following an
approach published previously[2] we re-factored and

cubic centimeter >

centimeter >

om:prefix

centi —> le-2

om.
rdf:type 'exponent 3

Y

rdf:type

Unit_exponentiation

unit multiple or submultiple

Figure 1 OM representation of cubic centimeter. The “compound units” in OM are divided into three top categories: “unit division”, “unit
multiplication” and “unit exponentiation” which provides additional information for automatically calculating the dimensions of new units.
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Table 1 Snapshot of the Dataset.

ID HEIGHT WEIGHT SBP CHOL HDL BMI SBP CHOL HDL
GR GR GR GR

128 227 55 0 0 1 0
134 5.9 1.7 1 0 1 0

pt1  1.82
pt2 179

177
196

The first two rows of the dataset used in the original format. In the last four
columns “1” represents “high risk” and “0" represents a “low risk” for the
condition listed in the header

extended a number of cardiovascular-relevant classes of
GALEN such that they could be used for logical reason-
ing and classification.

SADI and SHARE: SADI[19] is a set of standards-
compliant design principles for exposing stateless Web
Services on the Semantic Web. SADI Services consume
and produce RDF data, where the input and output data
properties are described by OWL classes. These classes
are, similarly, utilized to discover Services of interest
through their registration in the SADI Service registry.
SHARE[19] is an enhanced SPARQL query engine
which is capable of (a) decomposing OWL classes into
their constituent property restrictions, and (b) discover-
ing and invoking SADI Services based on the properties
those Services consume/produce.

SI0: The SemanticScience Integrated Ontology (SIO)
is an ontology that provides models for the representa-
tion of the scientific data [20]. It includes design princi-
ples that facilitate creation of flexible software and is
extensively used by analytical tools exposed using SADI
Semantic Web Services. Therefore our adoption of SIO
in this work allows us to more easily take advantage of
existing resources published using the SADI design pat-
tern, as well as rapidly publish and integrate new tools
as-needed.

Clinical data modeling
The GALEN ontology does not define the structure and
properties of individuals who would be members of its
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ontological classes, and therefore cannot easily be used
to classify data. As such, we extended the concepts in
GALEN using SIO and OM. For example, we extend
the concept SystolicBloodPressure in GALEN as in
OWL as follows:
measure:SystolicBloodPressure =
galen:SystolicBloodPressure and
(“sio:has measurement value” some
“sio:measurement” and

(“sio:has unit” some “om:unit of
measure”) and

(“om:dimension” value “om:pres-
sure dimension”) and

“sio:has value” some rdfs:Literal))

In the above, the measurement units are linked to
OM'’s “pressure dimension”. This guarantees dimension
compatibility during logical reasoning; i.e., all pressure
data in the clinical dataset are associated to “pressure
dimension” by om:dimension relationship, and can
therefore automatically be directed to pressure-dimen-
sion-relevant conversion services. Figure 2 shows the
schematic view of the data model for systolic blood
pressure. The model provides a machine-processable
mechanism for expressing semantics of measurement-
units in the clinical domain.

We followed OM’s framework for defining new units
in order to create several unit-types commonly used in
clinical science, but missing from OM’s existing set. For
instance the unit “centimeter_of mercury_column*
(¢cmHg) which is often used for monitoring blood pres-
sure does not exist in OM and was defined according to
OM’s standards.

Semantic Web services

A single generic SADI-compliant Web Service was con-
structed to manage conversions over the major quanti-
ties (dimensions) of measurement most frequently used
in clinical setting including Pressure, Concentration,

OM:Unit

galen:
SystolicBloodPressure

sio:
Measurement

siochasmeasurement

extended, Galen classes can be used for semantically enriched analyses.

Figure 2 Extending clinical concepts. Extending clinical concepts in GALEN with richer logic including measurement values and units. Once

“om:pressure dimension”
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Temperature, Length, and Mass. We first discuss the
generic signature of the service and then describe an
example use cases for pressure and concentration (with
minor differences) in more details. The other dimen-
sions follow similar principles.

The SADI service uses the semantics of the input data
it receives to automatically configure itself to the correct
type of conversion. The input and output of this service
are as follows:

Input:

“siochas measurement value” some
“sio:has unit” some “om: Unit of measure”
and “sio:has value” some rdfs:Literal

Output:

“siochas measurement value” some
“siohas unit” some “om: Unit of measure”
and “sio:has value” some rdfs:Literal
and “om:has dimension” exactly 1 om:
Dimension

The following algorithmic steps are carried out auto-

matically for each input data that meet the requirement:

1. Find the dimension of input data. If input data is
not explicitly annotated with dimension, use the web
service provided by OM to annotate the dimension
of the input data unit.

2. Use the dimension information to automatically
configure the service to the appropriate conversion
(e.g., Pressure convertor service).

3. Use the dimension information as the input to
find all the compatible units (units with the same
dimension)

4. Iterate through compatible units frequently used
in clinical settings (e.g., iterate through all units for
Pressure) and apply the conversion for each (the lim-
itations of this approach are discussed below)

5. Use the API to calculate “unit conversion offset”(-
getConversionOffset) and “unit conversion factor”(-
getConversionFactor) to convert the input data into
selected compatible units. Attach the dimension and
unit/value pairs to the output.

Results
Pressure
All patient data was converted into RDF format using a
pattern similar to that shown in Figure 2. We then
defined an ontological class “High-Systolic-Blood-Pres-
sure-Measurement”[21], as follows:
measure:SystolicBloodPressure and
siochasMeasurement some

(sio:Measurement and ("sio:has unit”

value om:kilopascal) and
(sio:hasValue some double[>=

“18.7"double])))
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This model uses units (kilopascals) that differ from
those in our dataset (mmHg and cmHg), which allows
us to demonstrate the ability of the system to automati-
cally detect and resolve unit conflicts. A SPARQL query
is provided to the SHARE query client that searches for
high blood pressure measurements, as follows:

SELECT ?record ?convertedvalue ?riskgrade
FROM «<./patient.rdf> WHERE
{
?record
HighSystolicBloodPressure.
?record sio:hasMeasurement ?measurement.
?measurement siochasValue ?convertedvalue.
?record cardio:ExpertClassification ?riskgrade.
}

In the above query SHARE examines the HighSystolic-
BloodPressure class and discovers the “sio:has unit”
value om:kilopascal axiom, indicating that measure-
ments of High Systolic Blood Pressure will need to be
expressed in kilopascals. It compares this to the mea-
surements in its dataset, and logically determines that
they are discrepant in their units. It then queries the
SADI registry to find a Service (the single Service
described above) that provides conversions on the OM
dimension of “Pressure” - i.e., a unit-conversion service
with the input property of some “om:pressure dimen-
sion”. It passes the measurement data to that service for
unit-homogenization. For each individual incoming
measurement, the unit is examined and the offset and
coefficient parameters required to convert between
source (input data) and target (required by the OWL
class) unit are dynamically retrieved by the service using
the OM REST interface. The conversion calculation is
then synthesized and applied to the incoming data.
Once all data have been processed, the result is a data-
set with all pressure units harmonized as kilopascals.
The resulting output data is integrated into the local
knowledge-base, prior to undertaking logical reasoning
using the Pellet reasoner, that classifies the patient data
as being consistent or inconsistent with the HighSysto-
licBloodPressure ontological definition.

Table 2 shows a demonstrative sub-set of the result data
corresponding to HighSystolicBloodPressure individuals,
the showing a variety of pressure units being homogenized

rdf:type measure:

Table 2 Units and values.

RecordID Start Start End End Unit Expert's
Val Unit Val classification
cm_hgl 15 cmHg 19.998 kilopascal High
cm_hg2 14.6 cmHg 19.465 kilopascal High
mm_hg1 148 mmHg 19.731 kilopascal High
mm_hg2 146 mmHg 19.465 kilopascal High

Units and valuse before and after conversion (2 digit precision).
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the kilopascals in accordance with the OWL class defini-
tion. Moreover, the system was able to identify all 134
individuals, classified by the expert as having high systolic
blood pressure, with no false positives. It should be noted
that though we did not find any misclassification, the pos-
sibility of rounding errors introduced as a result of conver-
sion cannot be ruled out; thus in future iterations it may
be desirable to specifically engineer the conversion services
to make “sensible” choices about rounding, based on
advice from expert clinicians.

Concentration

The term concentration most frequently refers to
amount of substance in a solution. There are two major
types of units that are used to represent concentration in
clinical settings usually used to denote the concentration
of different chemicals in plasma (e.g., Hemoglobin). The
first type represents the amount of substance per unit
volume (e.g., gram per liter) and the second type repre-
sents the number of moles per unit volume (e.g., mole
per liter). Thus, we should note that, for concentration,
both dimensions of mole/m3 (N1-3) and kg/m3 (ML=3)
are used in practice. Molar-based units are routinely used
in medicine and physiology. As a result 1) the “conver-
sion factor” between these different dimensions is not a
dimensionless parameter and 2) the conversion factor
between depends on the molar mass of the specific mole-
cule for which the measurement has been made. For
example to convert mmol/L to mg/dL for Triglyceride
and HDL we need to multiply by 88.57 and 38.67, respec-
tively. A comprehensive list of molar-based units for
plasma concentration of different chemicals and their
corresponding conversion factor can be found in [22].

To achieve conversions in this case, it is necessary to
know the specific type of incoming measurement, based
on its GALEN class; for example, if it is a Triglyceride
measurement, the incoming measurement must be of
rdf:type galen:tryglyceride, since the incoming units
carry insufficient semantics in-and-of themselves to gen-
erate the calculation parameters. Once the relevant
compound is determined from the logical type of the
incoming measurement, the conversion constants are
calculated using the molecular mass of each molecule as
per the look-up table in [22]. Here we only implemented
the concentration molecule-types used most frequently
in clinical sciences (see supplementary materials) for
performance reasons; however the framework is extensi-
ble by expanding the look-up table and the galen
molecule type ontology.

Evaluations similar to those described for Systolic
Blood Pressure were carried-out for Cholesterol and
HDL classification, and the system was able to correctly
convert and classify all records.
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Complex risk classification (revisited)

As mentioned, in our previous study[2], we demon-
strated that the combination of semantically-explicit
data, logically rigorous models of clinical guidelines, and
publicly-accessible Semantic Web Services, can be used
to execute automated, rigorous and reproducible clinical
classifications. However, in the previous study our unit
conversion services were written separately for each
quantity (one service for Pressure one service for
Concentration and so on). In addition, the conversion
formulas for conversion between different units were
hard-coded within the Web Services. Additionally, using
our previous framework the relation between a quantity
and its dimension was coded manually. In the current
experiment, we addressed these shortcomings and
repeated the previous experiment. Not surprisingly, the
results for binary classifications were consistent with
previous experiment (see supplementary materials). In
the following we will work through classification of
patients based on their BMI value. The other risk classi-
fications follow a similar pattern and are presented in
the supplementary materials.

Modeling BMI risks is more complex than modelling
concentration, since BMI is derived by algorithmic ana-
lysis of other core measurements (Height and Weight).
BMI is calculated using a person’s weight and height.
BMI in SI is calculated using the following formula.

mass (kg) mass (Ib)

= = 703
(height m))?  (height (in))>

Once again, for evaluation purposes we intentionally
defined BMI in a different unit than the one presented in
the dataset. Due to reasons not discussed here (see [2]), the
clinical researcher had used a different cut-off threshold
than the ones suggested by American Heart Association
(AHA) (26 kg/m2 was used instead of 25 kg/m?2 to classify
patient as “Overweight”).

Overweight =
Patient and
(sio:hasAttribute some
(measure:BodyMassIndex and
sio:hasMeasurement some (sio:Measurement
and
(sio:hasUnit value om:pound-per-
inch- squared) and
(sio:hasValue some double[>=
18278.0)))))

Where as before measure:BMI is extended using the
BMI class in the GALEN ontology and 18278 (the pro-
duction of 26 and 703) cut-off threshold is used to stra-
tify patients. Subsequently, a SPARQL query was
composed to classify records based on their BMI value.
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SELECT ?record ?convertedvalue ?riskgrade
FROM «<./patient.rdf> WHERE

{
?record rdf:type measure:Overweight.
?record sio:hasMeasurement ?measurement.
?measurement sio:hasValue ?convertedvalue.
?record cardio:ExpertClassification ?riskgrade.
}

It should be noted that BMI value does not exist in
the data prior to running the above query and it is cal-
culated using the Semantic Web Service schematically
shown in Figure 3 (sample data, and instructions on
how to send this data to the SADI service, are provided
in the supplementary materials)

Once we issue the SPARQL query above, the prop-
erty-restriction imposed on the output, when detected
by SHARE, triggers the discovery and invocation of the
Service that attaches the BMI class with appropriate
units and value properties attached to it (first the service
calculates all the possible output units and then it
selects the one required by the output; see below for
limitations of the approach). Similar our previous
experiment, using this approach we were able to build
ontological models that mirror the expert’s classification
of patients (based on BMI) of the individual clinical
researcher with 100% accuracy.

Limitations of the approach

The approach described in the examples above could
reasonably be criticized as being wasteful and/or ineffi-
cient, since the unit-conversion Service converts any
incoming unit into all possible output units (limited to
those defined in a look-up table of the most common
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units used in clinical practice). This can cause perfor-
mance issues; for instance a typical query takes on aver-
age 35 minutes to resolve on a single machine (4 core
3GHz machine with 8GB of memory) for the entire
cohort. The problem is likely to exacerbate when dealing
with large and complex and distributed datasets. Thus,
the current performance of the system is not acceptable
for a system designed to provide (close to) real-time sup-
port. We can envision several ways by which perfor-
mance improvement can be achieved. First, we note that
the apparent wastefulness explained above is not necessa-
rily a limitation of our Semantic approach to unit repre-
sentation, but rather a limitation of the SHARE client’s
interaction with the unit-conversion Service. The Service
is capable of receiving a “desired unit” parameter during
its invocation and, if present, it will use this information
to configure itself to do conversions non-wastefully; con-
verting only into that specific unit, rather than all possi-
ble units. The SHARE application, however, is not
capable of passing configuration parameters to a Service
during service invocation. Therefore, the apparent waste-
fulness of the computations is an artefact of our use of
SHARE. Other SADI clients are currently under develop-
ment, but were not available for this study. We reason-
ably anticipate that by using such clients, significant
performance improvement can be achieved.

There are several other areas other areas where signifi-
cant improvements could be made. This includes differ-
ent strategies for SPARQL query optimizations such as
parallel (as opposed to sequential) processing of different
services where possible, and development of strategies to
avoid invocation of irrelevant services, by checking the
input and output signature (currently all the services that

cardio:Mass cardio:Height

HTTP POST
ﬁ

sio:Measurement

appropriate units and value properties attached to it.

Figure 3 Schematic diagram of the SADI Web Service. SADI web service interface to the BMI calculation Service. The property-restriction
imposed on the output, when detected by SHARE, triggers the discovery and invocation of the Service that attaches the BMI class with

cardio:BMI

N

cardio:Mass cardio:Height

Response

—

o des

sio:Measurement
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attach a certain property will be invoked regardless of the
input and output datatype) of the services.

Conclusions

Unit conversion is a common and troublesome barrier to
integration. Busy health researchers should not need to
concern themselves this trivial, error-prone, but neces-
sary exercise. Here we have utilized a combination of
semantic standards and frameworks to demonstrate, with
several unit-conversion exemplar cases, that these types
of data integration problems can, and should, be dealt
with by the machines themselves. By encoding data with
semantic transparency, it becomes possible for machines
to detect unit conflicts and use semantic systems such as
SADI + SHARE to automatically resolve them.

We note that a large number of measurement units in
clinical practice include more complex unit patterns
than the ones we modeled. For instance the majority of
units used for drug dosage and clearance include tem-
poral elements (e.g., mg/kg/hour for the drug dosage)
that are not modeled in this study. To the best of our
knowledge such patterns have not been modeled in any
existing ontologies. As such, we plan to extend our fra-
mework to include more complex patterns together
with temporal units and their conversion. Finally, we
plan to extend our study to include different datasets
from multiple centers and evaluate the usability of our
approach in more complex biomedical scenarios.

Additional information
Supplementary materials, and working examples, are
provided at: http://biordf.org/MeasurementUnitsDemo.
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