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Abstract

Background: It is well known that DNA methylation, as an epigenetic factor, has an important effect on gene
expression and disease development. Detecting differentially methylated loci under different conditions, such as
cancer types or treatments, is of great interest in current research as it is important in cancer diagnosis and
classification. However, inappropriate testing approaches can result in large false positives and/or false negatives.
Appropriate and powerful statistical methods are desirable but very limited in the literature.

Results: In this paper, we propose a nonparametric method to detect differentially methylated loci under multiple
conditions for Illumina Array Methylation data. We compare the new method with other methods using simulated
and real data. Our study shows that the proposed one outperforms other methods considered in this paper.

Conclusions: Due to the unique feature of the Illumina Array Methylation data, commonly used statistical tests will
lose power or give misleading results. Therefore, appropriate statistical methods are crucial for this type of data.
Powerful statistical approaches remain to be developed.

Availability: R codes are available upon request.

Background
It is well known that DNA methylation has important
effects on transcriptional regulation, chromosomal stabi-
lity, genomic imprinting, and X-inactivation [1,2]. It has
been also shown to be associated with many human dis-
eases, such as various types of cancer [3-11].
With the advances of BeadArray technology, genome-

wide high-throughput methylation data can be easily gen-
erated by Illumina GoldenGate and Infinium Methylation
Assays. After preprocessing steps, such as background
correction and normalization, are applied to the raw
fluorescent intensities, for each locus, from about 30
replicates in the same array a summarized b-value is

generated as follows:
max {M, 0}

max {M, 0} + max {U, 0} + 100
,

where M is the average signal from a methylated allele
while U is that from unmethylated allele. The b -values
are continuous numbers between 0 and 1, with 0 stands
for totally unmethylated and 1 for completely methylated.
It has been shown that the b -value is rarely normally

distributed [9,12,13]. Therefore the commonly used t-test
for case control designs or ANOVA for multiple condi-
tions are not the most powerful approaches when detect-
ing differentially methylated loci. Observing this, Wang
has proposed a model-based likelihood ratio test to detect
differentially methylated loci for case and control data
under the assumption that the b -value follows a three-
component normal-uniform distribution [9]. Wang
showed that for some situations, their proposed test was
better than the simple t-test based on simulation studies.
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However, in their method, Wang did not consider the
effect of age, which has been shown highly associated
with methylation [14,15]. Noticing the importance of
age effect, one may use a linear regression with age
included as a covariate when analyze methylation data
with multiple conditions, such as cancer types. However,
the underlying assumption of equal variances may not
be satisfied [12]. Therefore the commonly used linear
regression method may not be appropriate.
In this paper, we consider methylation data with mul-

tiple conditions and propose a nonparametric method
which incorporates the age effect in a way through the
idea of combining p-values from independent tests
[12,16,17]. More specifically, we first group subjects into
several age groups based on their age; then for each age
group, a nonparametric Kruskal-Wallis test is conducted
for the given locus and the p-value is recorded. An over-
all p-value for that locus will be estimated through com-
bining the p-values from all age groups. Using a real
methylation data with three conditions and a simulation
study, we show that the proposed test is more powerful
than other methods, including linear regression.

Method
Proposed method
Assume there are K conditions and G age groups. For
each age group g (g = 1,2,...,G), we apply the nonpara-
metric Kruskal-Wallis test and obtain a p-value pKWg ,
then the overall p-value can be estimated by Fisher test
[18]:

pKW = χ2
df=2G(χ

2 > −2
G∑

g=1
log(pKWg )) (1)

Combined ANOVA test
Similarly, we can use ANOVA to replace KW test for
each age group and obtain an overall p-value with pKWg
being replaced by the p-value pANOVA

g from ANOVA test:

pANOVA = χ2
df=2G(χ

2 > −2
G∑

g=1
log(pANOVA

g )) (2)

Combined median test
Another nonparametric test is median test using the fol-
lowing statistic for each age group:

M = 4
K∑

k=1

(Ak − nk/2)
2

nk
, where Ak is the number of

times that the ranks of individual observations from
group k which excess the median from the pooled data,
and nk is the sample size of group k. When the sample
sizes are large, under the null hypothesis that all
samples have the same median, the statistic M has a

chi-square distribution with K-1 degrees of freedom.
The overall p-value from the combined median test can
be calculated:

pMedian = χ2
df=2G(χ

2 > −2
G∑

g=1
log(pMedian

g )) (3)

Combined welch test
We also consider the nonparametric Welch test. For
each age group, we have the test statistic [19]:

W =

K∑

k=1
wk(x̄k − μ̂)2/(K − 1)

1 + [2(K − 2)/(K2 − 2)]
K∑

k=1
hk

,

where wk = nk/s2k , μ̂ =
K∑

k=1
wkx̄k/w, w =

K∑

k=1
wk, hk = (1− wk/w2)/(nk − 1).

Under the null hypothesis, the statistic W is asympto-
tically distributed as F-distribution with K-1 and

f = (K2 - 1)/(3
K∑

k=1
hk) degrees of freedom. Welch test is

an improvement of the Cochran test [20] which usually
has inflated type I error rate especially for small sample
sizes [19,21]. The overall p-value from the combined
Welch test is:

pWelch = χ2
df=2G(χ

2 > −2
G∑

g=1
log(pWelch

g )) (4)

Methods for combining p-values
Besides the Fisher method mentioned above, we also
consider Z-test to combine p-values from indepen-
dent tests. First we calculated the weighted Z statistic
using individual p-values from each age group:

Z =
G∑

g=1
ng�−1(1− pg)/

G∑

g=1
n2g, where ng is the total sam-

ple size in age group g and F is the cumulative distribu-
tion function (CDF) of the standard normal distribution.
It is easy to see that this statistic has standard normal
distribution under the null hypothesis. The overall
p-value is calculated by 1- F(Z). Note that here we use
one-sided test to obtain the overall p-value.

Simulation settings
To compare each method applied to an individual age
group, we simulate b -value for three treatment groups
based on beta distribution with parameters a and b, beta
(a,b), and truncated normal distribution on (0,1) with
parameters μ, s2, TN(μ, s2). We assume the sample sizes
(denoted as s in Tables 1, 2 for the simulation results) for
the three treatments are either balanced: s = 30 for each,
or non-balanced: s = 20, 30, and 40. First we compare the
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estimated type I error rates with the given significance
level of 0.05 under the null hypothesis of no differences
among treatment groups. Then we compare the empirical
powers from each method under various situations. The
empirical power is the proportion of rejected null hypoth-
esis to the number of replicates.

A real data set
We will use a real methylation data set, the United King-
dom Ovarian Cancer Population Study (UKOPS) [15] with
274 controls, 131 pre-treatment cases, and 135 post treat-
ment cases, to compare the performance of the proposed
test with others. Those methylation data were generated
by the Illumina Infinium Huamn Methylaytion27 Bead-
Chip and can be downloaded under accession number
GSE19711 from the NCBI Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo).
For this data set, there are 27578 loci. After data qual-

ity control process, we removed some subjects with BS
values less than 4000 or the coverage rates less than
95%. We also separate subjects into 6 age groups

(50-55, 55-60, 60-65, 65-70, 70-75, and 75 and over).
Table 3 gives the numbers of subjects in each age by
treatment groups. For each locus, we perform the above
mentioned approaches.

Results
Simulation results
Table 1 reports the estimated type I error rates from
each method under different conditions. For most of the
time, the estimated type I error rates are close to the
nominal significance level as expected. Table 2 gives the
empirical powers from each method. It can be seen that
the non-parametric method of Mood’s median test
usually has the lowest powers in the simulations. None
of the ANOVA, Welch and KW tests is uniformly most
powerful. In words, their performances depend on the
distributions from which the data are generated. From
our simulation study, the KW test is usually as powerful
as or more powerful than the ANOVA test. The true
distributions of the b -value may vary from locus
to locus; it is impossible to simulate all possible

Table 1 Estimated type I error rates at significance level 0.05 with 10000 replicates.

Distribution (sample sizes, parameters) ANOVA median Welch KW

Beta (s = 30,30,30, a = 1,1,1, b = 2,2,2) 0.048 0.040 0.052 0.047

Beta (s = 30,30,30, a = 1,1,1, b = 10,10,10) 0.052 0.044 0.053 0.051

Beta (s = 30,30,30, a = 10,10,10, b = 1,1,1) 0.047 0.044 0.052 0.048

Beta (s = 30,30,30, a = 10,10,10, b = 10,10,10) 0.045 0.045 0.047 0.046

Beta (s = 20,30,40, a = 1,1,1, b = 2,2,2) 0.053 0.052 0.050 0.053

Beta (s = 20,30,40, a = 1,1,1, b = 10,10,10) 0.049 0.049 0.054 0.048

Beta (s = 20,30,40, a = 10,10,10, b = 1,1,1) 0.045 0.049 0.056 0.044

Beta (s = 20,30,40, a = 10,10,10, b = 10,10,10) 0.050 0.051 0.043 0.052

TN (s = 30,30,30, μ = 0.5,0.5, 0.5, s2 = 0.1,0.1,0.1) 0.050 0.044 0.053 0.045

TN(s = 30,30,30, μ = 0.5, 0.5, 0.5, s2 = 0.1,0.2,0.3) 0.053 0.067 0.047 0.053

TN (s = 20,30,40, μ = 0.5, 0.5, 0.5, s2 = 0.1,0.1,0.1) 0.050 0.052 0.052 0.049

TN(s = 20,30,40, μ = 0.5, 0.5, 0.5, s2 = 0.1,0.2,0.3) 0.047 0.054 0.051 0.043

Table 2 Empirical power at significance level 0.05 with 10000 replicates.

Distribution (sample sizes, parameters) ANOVA median Welch KW

Beta (s = 30, 30,30, a = 5,5,5,b = 20,25,30 0.821 0.576 0.810 0.775

Beta(s = 30, 30,30, a = 1.5,2,2.5, b = 20,20,20 0.650 0.504 0.648 0.710

Beta (s = 30, 30,30, a = 20,20,20, b = 1.5,2,2.5, 0.658 0.495 0.656 0.713

Beta (s = 20,30,40, a = 5,5,5, b = 20,25,30) 0.792 0.546 0.740 0.735

Beta (s = 20,30,40, a = 1.5,2,2.5, b = 20,20,20) 0.599 0.479 0.634 0.670

Beta (s = 20,30,40, a = 20,20,20, b = 1.5,2,2.5) 0.607 0.475 0.637 0.665

TN (s = 30, 30,30, μ = 0.45,0.5,0.55, s2 = 0.2) 0.383 0.240 0.378 0.362

TN (s = 30, 30,30, μ = 0.45,0.5,0.55, s2 = 0.1,0.2,0.3) 0.338 0.325 0.412 0.341

TN (s = 20,30,40, μ = 0.45,0.5,0.55, s2 = 0.2) 0.349 0.238 0.343 0.328

TN (s = 20,30,40, μ = 0.45,0.5,0.55, s2 = 0.1,0.2,0.3) 0.219 0.361 0.423 0.259
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distributions. However, based on the observation of the
real data, we know that the distributions of the b -value
are far from the normal distribution, under which
ANOVA is the best test. Therefore, we prefer nonpara-
metric tests which are more robust.

Results from real data set
or the real data set, we applied the above mentioned
methods to get the overall p-values (either using Fisher
or Z test to combine p-values from individual age
groups) for each locus. Then we use various cutoff p-
values, 0.001, 0.0001, 0.00001, and 0.000001, to count
how many loci have smaller p-values for each method.
Table 4 reports the results. We can see that the KW
method usually finds more significant loci than other
methods. It also shows that the two combining p-value
methods, Fisher and Z test have similar performances,
although Z test usually give a little bit more significant
loci expect for the Median test. Figure 1 plots the
negative log10 p-values from pairs of the methods. It
shows that the KW method gives smaller p-values
especially when the differences among the three treat-
ment groups are not large (e.g., the negative log10 p-
values between 3 and 6). From Figure 1 we can see
that for a given cutoff p-value, most of the loci identi-
fied by ANOVA test or Median were also detected by
the Welch test; in turn, most of the loci identified by
Welch test were also detected by the KW test. This
indicates the KW test is more powerful than other
methods compared.

Discussion and conclusions
Due to the unique feature of the b -value of methylation
data, traditional statistical methods, such as linear regres-
sion and ANOVA test may not be appropriate. It has been
shown that methylation is highly correlated with age;
ignoring age effect may cause many false positives and/or
false negatives. The effect of age may also not be linear;
therefore we need a better way to account for this effect.
In this paper, we use p-value combination method to deal
with age effect. For each age group, we use nonparametric
method to compare the treatment groups. It is important
to find powerful and robust nonparametric methods for
this sort of data. Although we found that KW method is
more powerful than some other nonparametric methods
for methylation data, it is desirable to find more powerful
tests in this area. Furthermore, we want to point out that
there are many other methods can be used to combine
p-values [22,23]; it may also be possible to find a more
powerful method to combine p-values for Illumina Array
Methylation data. However, based on our experiences,
Fisher test is more robust and can be used in situations
when a small portion of the p-values are very small; while
the Z test is more powerful when the effect sizes are simi-
lar (e.g., the p-values don’t differ much) for all of the age
groups. Finally, although in this paper we use different
cutoff p-values to compare the performance of tests, one
may want to control the false positive rate. Several multi-
ple comparison methods have been proposed for large
scale data set to deal with the situations where the vari-
ables (loci) are not independent [24-28]. However, it

Table 4 Number of significant differentially methylated loci detected for given cutoff p-value based on the real data.

Method 1e-3 1e-4 1e-5 1e-6

Fisher Z-test Fisher Z-test Fisher Z-test Fisher Z-test

ANOVA 981 1079 655 690 479 499 350 375

Median 906 893 464 449 255 240 143 127

Welch 1096 1106 640 673 416 424 281 289

K-W 1359 1340 823 859 551 590 381 401

Table 3 Number of samples in age group by treatment group used in the paper after removing subjects with bs
<4000 or coverage rate <95% or age >80.

Age group control Pre-treat Post-treat Total

50_55 14 15 16 45

55_60 61 17 25 103

60_65 64 17 22 103

65_70 35 17 21 73

70_75 63 24 22 109

75_over 20 18 9 47

Total 257 108 115 480
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remains to study which approach is more appropriate for
the methylation data.
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