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Abstract

genotyped population.

Background:: Identification of QTLs for important phenotypic traits, through the use of medium-density genome-
wide SNP panels, is one of the most challenging areas in animal genetics, for preventing the time-consuming
direct sequencing of putative candidate genes, when searching for the mutations that affect the trait. Appropriate
statistical analyses allow the identification of genomic regions associated with the investigated trait in the

Methods: The selective genotyping technique was applied to 1000 genotyped animals with known phenotype.
Sliding windows composed of five consecutive SNPs were created for each chromosome; we assumed that the
QTLs were encoded by the windows showing the highest difference in the frequency of the same alleles between
the most divergent productive groups (the two tails of the distribution).

Results: Ten windows affected at least one trait. For five of these windows, the highest and significant effect was
given by one only SNP, which could therefore be taken as the QTL itself.

Conclusions: In this study we proposed a simple method to identify genomic regions associated to the phenotype

under study. The identification of the DNA region is the first step to search for the mutation which is really
responsible for the trait variability, through the direct sequencing of the genome regions that encode the QTL.

Background

The recent availability of genome-wide SNP panels,
which offered the opportunity to evaluate the variation
in SNP allele frequencies between populations, allowed
the successful finding of genomic regions subject to
positive selection in human and cattle [1-5]. For the
identification of selection sweeps for milk traits, efficient
application of the selective genotyping strategy for QTL
mapping has been reported in dairy cattle [6], swine [7]
and sheep [8]. In these cases, the extreme divergent
individuals for a trait (the two tails of the distribution)
are chosen and genotyped. Boligon et al. [9] compared
selective genotyping strategies for prediction of breeding
values in a population undergoing selection, and con-
cluded that animals with extreme yield deviation values
in a reference population are the most informative when
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training genomic selection models. Using the selective
genotyping approach, Moioli et al. [8] identified two
novel non-synonymous mutations associated with milk
yield in sheep, and demonstrated their effect also in
independent populations.

In the present study, we hypothesized that selection
sweeps, detected in a simulated population, were useful
to map QTLs for the trait under selection in the whole
population.

Materials and methods

Dataset

Three milk production traits were simulated in a popu-
lation of 3,000 females, included in a data set of 4,100
individuals of 4 different generations (GO to G4) having
known pedigree. Females and parental genotypes at
10,000 SNPs equally distributed on 5 chromosomes
were available. A detailed description of the population
is reported by Usai et al. [10].
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Statistical analysis

The selective genotyping technique was simulated on
the females of generation 3 (1000 females), assuming
that they were those who had better profited of the
selection. Their production was reported on table 1.
Allele frequencies at each SNP of each chromosome
were calculated separately for the group the production
of which was <-1 st dev for each trait, and the group
the production of which was >1 st dev for each trait.
The number of the animals of each group was also
reported in table 1. The QTLs so hypothesized might be
affected by the number of individuals included in the
production tails, this depending on the additive-relation-
ship between them, which might not represent the aver-
age relationship of the whole population. Habier et al.
[11], in the context of predicting genomic breeding
values (GEBV), advised that additive-genetic relation-
ships between the training individuals and a selection
candidate, captured by SNPs, affects the GEBV accuracy
of that candidate. Therefore, in the present study, coeffi-
cient of relationship between the individuals of each tail
portion, as well as the whole population were calculated
as in Wright [12] using Proc Inbreeding in SAS [13].

The QTL effect was subsequently estimated with the
use of sliding windows, composed of five consecutive
SNPs and calculated for each of the five chromosomes.
The number of markers in each window was estab-
lished based on the consideration that the SNP density
of the simulated population of the present study was
similar to the average SNP density of the cattle panel
used by Stella et al. [2]. These authors suggested that
sliding windows of 5, 9, and 19 SNPs respectively give
similar results when searching for selective sweeps
in cattle.

For each window, the sum of the differences (in abso-
lute value) of the allele frequencies, at each SNP,
between the two productive groups, was calculated; the
sliding windows were then ranked, according to this
parameter, within each chromosome. We arbitrarily
hypothesized that the potential QTL, for the considered
trait, was located in the top ranking window. Because
the selective genotyping was performed separately for
the three traits, the potential QTLs could be located in
different windows; for this reason, more than one

Table 1 Statistical parameters relevant to the analyzed
traits in the female population of generation 3

Variable N mean st dev min max N< -1 N> 1
stdev st.dev

Trait1 1000 -642 17132 -52643 48317 173 150

Trait2 1000 0170 960  -3223 2551 165 167

Trait3 1000 0.000396 0.02388 -0.089 0.085 156 153
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window in the same chromosome were considered in
the subsequent analyses.

The top ranking sliding windows, encoding the
hypothesized QTL, as well as the potentially affected
traits, are reported in table 2.

Estimation of the QTL effect for the whole window of

5 SNP

The QTL effect was calculated on the whole recorded
population as follows.

For each sliding window, the most probable haplotype
alleles were calculated using the EM algorithm [14],
through Proc Haplotype in SAS [13], and were assigned
to each phenotyped individual (n = 3000).

For each haplotype allele showing allele frequency
> .07 in the recorded population, the allelic substitution
effect was estimated as a covariate on each trait, as in
Sherman et al. [15], with the following model:

y = b(haplotype allele) + e

Where y = traitl, trait2 and trait3

Alleles were coded as follows: 2 copies of the same
allele = 2; one copy = 1; no copy = 0.

To account for multiple testing, the corrected prob-
ability of the effect was estimated using the False Dis-
covery Rate test with Proc Multtest in SAS [13].

Table 2 Top ranking sliding windows based on the
highest difference in allelic frequencies between the two
productive groups, separately for each trait

chr Starting End markers QTL QTL QTL
position position trait1 trait2 trait3

1 84,000,000 84,200,000 SNP1681 - X X
SNP1685

1 14,500,000 14,750,000 SNP291 - X
SNP295

2 92,500,000 92,450,000 SNP3847 - X
SNP3851

2 46,700,000 46,900,000 SNP2935 - X
SNP2939

2 76,900,000 77,100,000 SNP3539 - X
SNP3543

3 400,000 600,000 SNP4009 - X
SNP4013

3 26,600,000 26,800,000 SNP4533 - X
SNP4537

3 36,850,000 37,050,000 SNP4738 - X
SNP4742

4 7,650,000 7,850,000 SNP6154 - X
SNP6158

4 24,850,000 25,250,000 SNP6498 - X X
SNP6502

5 69,300,000 69,500,000 SNP9387 - X X
SNP9391

5 2,700,000 2,950,000 SNP8055 - X
SNP8059
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Estimation of the SNP effect from the haplotype effect
Under the hypothesis that one SNP of each haplotype
was expected to have a major effect on the recorded
trait, direct observation of those haplotype alleles that
showed a highly significant effect (P < .00001) on one
trait allowed to select one SNP where the two alleles
showed opposite effects on that trait. For each of those
SNPs, the substitution allelic effect was estimated as a
covariate on each trait, similarly and with the same
model as for the estimation of the allele haplotype
effect.

Results

Because the selective genotyping strategy was performed
separately for the three traits, the statistically significant
windows varied depending on the considered trait
(Table 2).

The average additive relationship values of each of the
selected tails, for each trait, were very similar to each
other’s (Table 3), ranging from 4.26 to 4.37 %; but they
were higher than the corresponding value calculated for
the whole population (3.01%). For all tested haplotypes,
the corrected probabilities, after consideration of the
EDR, of the allelic substitution effects, were reported in
table 4.

Through direct observation of those haplotype alleles
that showed a significant effect on one trait, it was pos-
sible to make evident which SNP, within the haplotype
allele, might have been directly responsible of the trait
variability. In Table 5 only the SNPs that presented a
highly significant (P < .0001) allelic substitution effect
were reported. These SNPs, located on chromosomes 1,
3 and 4 might be themselves considered the QTLs influ-
encing the relevant trait.

Table 4 Haplotype effects.
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Table 3 Average relationships in the selected groups of
animals and in the whole population

Trait tail N Coefficient of relationship
mean st dev
1 highest 150 433 0.017
1 lowest 173 427 0.018
2 highest 167 432 0.017
2 lowest 165 4.27 0.018
3 highest 153 437 0.017
3 lowest 156 4.26 0017
Total 4100 301 0016
Discussion

In this study, two assumptions were arbitrarily made.
The first was that the selective genotyping strategy was
successful for QTL mapping. Although the literature
reported evidence of the suitability of this strategy [9],
the decision to what animals should be considered as
highly divergent for each trait was a choice of the
authors. Therefore, the results obtained, both in num-
bers and in the position of the QTLs, might have been
different if more or less restrictive parameters had been
chosen. The additive relationship values of each of the
selected tails, for each trait, were very similar to each
other’s, ranging from 4.26 to 4.37 %; but they were
higher than the corresponding value calculated for the
whole population (3.01%). To appraise the extent of the
difference in the average relationship between the tails
and the whole population, it is useful to cite Vahlsten et
al. [16] who reported that an increase by 0.96 % units of
relationship, per generation, is to be considered slow,
this value referring to Friesian bulls, born during 40
years, and belonging to a population of over 400,000

chr Pos. (Mb) Haplo. Freq Trait 1 Trait 2 Trait 3
Start/End allele
Effect FDR P Effect FDR P Effect FDR P
1 840 11222 021 487 <10 05 ns 99*10° <10
84.2
12121 0.24 325 <10 09 2¥107 4.1%10° <10
12111 007 218 2¥107 02 ns -7.0%10° <10
11121 0.09 20 ns 03 ns 6.1*10* ns
12122 007 242 1%107 08 ns -9.8%10° <10
21222 0.07 57 ns 0.1 ns 15%10° ns
1 145 11117 0.08 -16.7 7¥10° 04 ns 21%10° 8107
147
12111 0.19 371 <10 28 <10 2.9%10-3 5%10™
12112 0.18 181 44107 05 ns 22107 8*10°
12121 0.14 05 ns 13 3*10* 6.0%10° <10
12212 032 255 <10 23 <10 40%10° <10




Moioli et al. BMC Proceedings 2014, 8(Suppl 5):S5 Page 4 of 6
http://www.biomedcentral.com/1753-6561/8/5S5/S5
Table 4 Haplotype effects. (Continued)
2 467 11122 0.11 -14.1 ns 05 ns 1.7%10° ns
469
1112 0.26 36 ns 04 ns 3.0%10° <10
12111 0.23 -179 4%10° -10 2%10° 43%10 ns
22111 0.19 84 ns 0.0 ns -24*107 6*10°
2 769 1112 0.29 -129 2%107 038 8*10° 2.7%10° ns
77.1
21112 0.28 24 ns 0.1 ns -1.2#107 ns
22221 0.26 7.0 ns 08 1107 13*10° ns
22112 007 250 1%107 0.2 ns -5.1*107 2*10
2 923 1111 0.39 131 2X107 06 5%107 -5.1*10* ns
925
22122 0.11 05 ns 0.1 ns 6.7*10™ ns
22222 0.11 -16.5 4107 06 ns 16*10° ns
3 04 11121 0.11 -22.1 8*10° 15 110 -1.7%10° ns
06
11122 0.27 10.1 ns 0.1 ns -32*10° <10
22211 032 95 ns 14 <10 35*10° <10
22121 0.1 90 ns 0.2 ns 34*10° 3*10°
3 266 11121 038 173 490" 09 440" 7.4¥10™ ns
268
22212 0.22 317 <10* 1.2 2*10™ -33*10° <10
11222 007 -159 ns 09 ns -6.2¥10™ ns
22222 0.11 48 ns 0.2 ns 24¥10° ns
3 36.9 11111 0.14 244 1*107° 04 ns -1.0%107 <10*
37.1
21111 0.1 -194 2%10 04 ns 74¥10° <10*
21122 0.1 06 ns 06 ns 3.2%10° 3*10°
21112 0.08 23 ns 02 ns 75%10* ns
12111 0.16 -40 ns 03 ns -1.1*10" ns
21222 0.19 27 ns 04 ns 36*10° <10
4 77 1112 034 138 1102 0.2 ns -23*10° 8*10™
79
11122 0.11 -14.9 5%102 1.1 1107 -64*10* ns
12112 007 258 1%107 -19 2%10* -1.8*107 ns
22212 0.16 -139 4107 0.2 ns 474103 <10™
4 249 11122 007 -123 ns 18 110 -3.8*10° ns
253
11211 0.15 245 110 13 110 82*10™ ns
12121 007 498 <10 30 <10 -6.0%10™ ns
12122 023 358 <10™ 26 <10™ 15%10° ns
21111 0.14 379 <10* 25 <10* -22%10° ns
5 69.3 12121 035 277 <10* -16 <10* 52%10* ns
69.5
12112 0.15 202 2%10° 08 44107 -25%10° %107
12212 0.08 120 ns 0.1 ns -25%10° %102
21212 0.19 153 1102 1.1 2%10° 86*10™ ns
5 2.7 12111 0.19 -114 ns 04 ns 13*10° ns
29
21221 0.16 273 <10* 04 ns 49%10° <10*
22111 0.19 263 <10 08 5%107 -3.0*107 1*10*
22112 0.16 53 ns 03 ns -3.7*107 <10
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Table 5 Effect of allele 1 of the SNP with major effect on
each trait.

Chr SNP position  affected trait  effect P-value
T SNP293 14,600,000 2 2470 20%1071°
1 SNP293 14,600,000 2 2470 <1.0¥107°
1 SNP293 14,600,000 3 0004  73*10%
1 SNP1682 84,050,000 1 -39230 <10*107°
1 SNP1682 84,050,000 3 0008 <10%107'°
3 SNP4738 36,850,000 3 -0008 <10*107°
4 SNP6155 7,700,000 118050  80%10%
4 SNP6155 7,700,000 3 -0003  40%10%
4 SNP6499 24,900,000 1 -58550 <10*10'°
4 SNP6499 24,900,000 2 3760 <10*107°

animals. It can therefore be inferred that the relation-
ship differences observed in the present study reproduce
the mere generational trend.

The second assumption was that the QTL was encoded
by an haplotype of 5 consecutive SNPs. Weller and Ron
[17] underlined how important is the extent of LD in the
application of genome scans to breeding programs.
These authors noted that population-wide linkage LD
extends, in dairy cattle, over less than 1 cM, i.e. a much
shorter extent than the genetic linkage within families,
that extends over tens of centimorgans. It is therefore
possible that the hypothesis that the QTL was encoded
by the haplotype with the highest effect on each trait was
not the most appropriate for this study, the analyzed
population consisting in a simulated sample. However,
because the sliding windows encompass consecutive mar-
kers, the choice to select the top ranking window for each
trait seemed appropriate, because it allowed the identifi-
cation of single SNPs (Table 5) having a very high signifi-
cant effect on one trait, the probability for some of them
being < .1.0E-16.

Conclusions

In this study we proposed a simple method to identify
genomic regions associated to the phenotype under
study, regions that could therefore be taken into account
as the potential QTLs. The identification of the DNA
region is the first step to identify the mutation which is
really responsible for the variability of the trait, through
the direct sequencing of the genomic regions that
encode the QTL. The precision of the QTL estimation
can vary depending on the deviations values established
in the reference population to define which animals are
extremely divergent.
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