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Abstract

We propose a novel variance component approach for the analysis of next-generation sequencing data. Our
method is based on the detection of the proportion of the trait phenotypic variance that can be explained by the
introduction of a new variance component that accounts for the local gene-specific departure of the empirical
kinship relationship matrix, estimated from single-nucleotide polymorphism (SNP) genotypes, from their theoretical
expectation based on the genealogical information in the pedigree. We tested our method with simulated
phenotypes and imputed SNP genotypes from the Genetic Analysis Workshop 18 data set. We observed
considerable variation in the differences between theoretical and gene-specific kinship estimates that proved to be
informative for our test and allowed us to detect the MAP4 causal gene at a genome-wide significance level. The
distribution of our test statistic show no inflation under the null hypothesis and results from a random set of genes
suggest that the detection of MAP4 is both sensitive and specific. The use of 2 different strategies for the selection
of the SNPs used to derive the gene-specific empirical kinship relationship matrices provides us with suggestive
evidence that our method is performing as an empirical test of linkage.

Background
Complex phenotypes are thought to be determined by
the aggregate effects of many rare causal variations
[1-3]. Detection of the true causal variations present in
next-generation sequencing data sets [4,5] is challenging
because their faint signals are difficult to separate from
background noise. Most of the current analytical meth-
ods try to improve the signal-to-noise ratio by reducing
the number of statistical tests needed for a significant
signal to be detected.
A common approach to alleviate the multiple-testing

problem is to collapse, commonly by membership of a
variant in a known annotated gene or pathway, the infor-
mation conveyed by individual variants into a single mea-
sure, like a principal component or a weighted rank, that
can then be tested [6]. However, a common limitation of
many approaches is that the aggregation of the variants
into a single measure often involves an arbitrary defini-
tion of the directionality of each variant’s fixed effects.

We present a novel random-effect-variance compo-
nent-based approach that uses gene-specific relationship
matrices to collapse variants into a per-gene genetic
contribution effect.

Methods
Data set
The Genetic Analysis Workshop 18 (GAW18) data [7],
based on whole genome sequencing data for the odd-num-
bered chromosomes of 464 individuals released by the
T2D-GENES Consortium, was used to test our method.
Specifically, we used pedigrees, minor allele-based single-
nucleotide polymorphism (SNP) dosages, and the SIM-
PHEN.1 simulated phenotypes in the GAW18 data set.

Definition of the gene loci
The transcription start site and the stop codon coordi-
nates for the longest transcript associated with a gene
were obtained from the UCSC’s human genome release
19 (hg19) known gene table.

Gene-specific SNP dosages
To investigate if the procedure used to select the SNPs
that were collected on a per-gene locus basis affected
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our test results, we used 2 different SNP selection
approaches: the intragenic and the nonsyn strategies.
The intragenic strategy consisted of the selection of all
SNPs within the bounds of a gene. The nonsyn strategy
consisted of the selection of the subset of intragenic
SNPs that were annotated as being nonsynonymous
coding changes using ANNOVAR [8]. GAW18 SNP
dosages from the imputed genotypes where then col-
lected into separate, gene-specific, dosage files for SNPs
selected using the intragenic and nonsyn strategies.

Gene-specific empirical kinship matrices
Gene-specific dosages were transformed into genotypes
and processed with KING [9], a method for relationship
inference from large SNP genotype data sets that is
robust to population substructure, to produce a gene-
specific matrix of empirical kinship coefficients.

Control for unknown population substructure
To control for possible population stratification, principal
component loadings were calculated using the prcomp
function in R [10], with data from 117 unrelated indivi-
duals for approximately 29,000 haplotype tagging SNPs
in low mutual linkage disequilibrium, and then projected
onto the full set of genotyped individuals. The first 5
principal components explained 5% of the total phenoty-
pic variance and were added as covariates to our variance
component model.

Trait and covariates
We used the simulated phenotypic data at the first exam
for the systolic blood pressure (SBP_1) trait. The sex
(SEX), age (AGE_1), and smoke (SMOKE_1) status at the
first exam phenotypes were introduced as covariates into
our variance component model. The Q1 trait was used to
assess the distribution of our test statistic under the null
hypothesis.

Variance component model
Our method uses gene-specific relationship matrices
(GSRMs) to extract the proportion of the trait’s variance
explained by a single gene as a result of the departure of
its localized empirical kinship estimates (EKEs) from
their pedigree-derived theoretical kinship expectations
(TKEs). A new variance component parameter (h2geff)
was introduced into a standard variance component
model

� = σ 2
Phenotypic

(
2�h2r + 2Eh2geff + Ie2

)

where � is the covariance matrix, σ 2
Phenotypic is the total

phenotypic variance; h2r , h
2
geff , and e2, respectively, repre-

sent the proportion of σ 2
Phenotypic that can be attributed to

the residual additive effect of polygenes, a gene-specific
effect; and a random environmental effect, �, is the TKE
kinship matrix, E is the EKE kinship matrix, and I is the
identity matrix. This partitioning of the trait variance
was estimated using an extension of the polygenic com-
mand from SOLAR [11] independently for each gene.

The significance of each h2geff estimate was obtained

from a likelihood ratio test against the null model

� = σ 2
Phenotypic

(
2�h2r + Ie2

)

Because the variance component h2geff is tested on its
boundary, the likelihood ratio test statistic is distributed
as a ½:½ mixture of a 1 degree of freedom (DF) chi-
square and a point mass at zero [12].

Results
We compared the observed gene-specific EKE values
obtained from the imputed SNP dosages with the TKE
values derived from the pedigree and found substantial
differences between them (Figure 1). The negative skew
in Figure 1 shows that gene-specific EKE values are lar-
ger than their TKE counterparts and it shows that for
certain genes individuals appear to be more closely
related than expected from their relatedness in the
pedigree.
We then performed variance component analyses

using GSRMs with intragenic and nonsyn EKE values
for 12 of the causal SBP_1 genes in the simulated data
set (Table 1) and a random gene sample (Table 2). We
detected a clear and significant signal from the MAP4
causal gene using both the intragenic and nonsyn strate-
gies, that reached genome-wide significance (after a con-
servative Bonferroni correction for 30,000 tests, p <1.6 ×
10−6) in the nonsyn (Table 1). The magnitude of the

Figure 1 Distribution of the gene-specific differences between
TKEs) and EKEs. Differences between TKE and EKE values were
averaged by gene for a sample of 100 random and 12 SBP_1 causal
genes. The negative sign indicates that the gene-specific EKE
average is larger than the TKE average.
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MAP4 signal is strong enough for it to be specifically
detected as the top result in a random sample of 100
genes (Table 2). Other causal genes also rank among
the top results, but their signals are weaker (Table 2).
Figure 2 suggests that our approach has the sensitivity
to separate true-positive signals from false-positive ones,
as there is no inflation or deflation of the p values that
we obtained for the estimates of the gene effects evalu-
ated under the null hypothesis.

Discussion
We performed variance component analyses using a
novel approach to estimate the proportion of the trait
phenotypic variance that can be attributed to a single
gene. We first collapsed the genotypes from SNP variants

into a GSRM that more closely approximates the correla-
tions between related individuals at a gene-specific level.
Figure 1 shows that there is substantial variation among
genes in terms of the differences between TKE and gene-
specific EKE values that had the potential to explain part
of the trait variance. Thus, we then obtained gene-speci-
fic estimates of the h2geff parameter and its significance
from SOLAR, using the empirical GSRM.
Our results showed that the gene with the highest

effect on the simulated SBP_1 trait was detected at a
significance level that surpasses a conservative multiple
testing threshold for the p values. Figure 2 shows that
our test statistic was not inflated when evaluated under
the null hypothesis using the Q1 trait and a random
sample of genes. MAP4 was also consistently detected

Table 1 Estimated effects on the simulated SBP_1 trait for known causal genes

Gene Strategy

Intragenic Nonsyn

h2r h2r_p geff geff_p h2r h2r_p geff geff_p

MAP4 0.17 3.90 × 10−6 0.10955 7.20 × 10−6 0.18 7.00 × 10−7 0.10382 1.00 × 10−7

LEPR 0.26 4.16 × 10−8 0.04702 6.52 × 10−3 0.31 2.28 × 10−10 0.01147 1.71 × 10−1

LRP8 0.28 6.97 × 10−9 0.03575 6.55 × 10−3 0.32 3.44 × 10−11 0 1

GTF2IRD1 0.29 4.19 × 10−9 0.01755 9.24 × 10−2 0.32 3.44 × 10−11 0 1

TNN 0.30 9.51 × 10−10 0.01615 9.29 × 10−2 0.27 7.20 × 10−9 0.03433 1.26 × 10−3

FLT3 0.30 8.37 × 10−10 0.00906 1.59 × 10−1 0.32 3.44 × 10−11 0 1

CABP2 0.32 4.12 × 10−11 0.00037 4.76 × 10−1 0.32 3.44 × 10−11 0 1

ABTB1 0.32 3.44 × 10−11 0 1 0.21 4.01 × 10−11 0.17969 1.90 × 10−1

GAB2 0.32 3.44 × 10−11 0 1 0.32 3.44 × 10−11 0 1

GSN 0.32 3.44 × 10−11 0 1 0.32 3.44 × 10−11 0 1

KRTAP11-1 0.32 3.44 × 10−11 0 1 0.32 3.44 × 10−11 0 1

PSMD5 0.32 3.44 × 10−11 0 1 0.30 9.46 × 10−11 0.00949 1.25 × 10−1

geff, Gene-specific effect estimate (h2geff ); geff_p, significance of the gene-specific effect estimate; h2r, trait heritability estimate (h2r ); h2r_p, significance of the

trait heritability estimate.

Table 2 Top 10 most significant results for genes in a combined sample of 100 random and 12 causal genes

Rank Strategy

Intragenic Nonsyn

Gene h2r h2r_p geff geff_p Gene h2r h2r_p geff geff_p

1 MAP4* 0.17 3.90 × 10−6 0.10955 7.20 × 10−6 MAP4* 0.18 7.00 × 10−7 0.10382 1.00 × 10−7

2 OR9A4 0.18 6.16 × 10−11 0.20337 4.64 × 10−3 TNN* 0.27 7.20 × 10−9 0.03433 1.26 × 10−3

3 LEPR* 0.26 4.16 × 10−8 0.04702 6.52 × 10−3 LSM12 0.15 3.40 × 10−11 0.26452 4.96 × 10−3

4 LRP8* 0.28 6.97 × 10−9 0.03575 6.55 × 10−3 NAT6 0.30 3.20 × 10−11 0.02515 1.16 × 10−2

5 NAT6 0.28 1.12 × 10−10 0.03592 8.39 × 10−3 AK123654 0.15 2.27 × 10−10 0.25783 1.37 × 10−2

6 CCDC169-SOHLH2 0.28 1.05 × 10−8 0.03547 2.25 × 10−2 OR2T27 0.28 1.05 × 10−10 0.04869 1.46 × 10−2

7 OR2T27 0.30 1.07 × 10−10 0.03072 4.20 × 10−2 HSPA9 0.15 8.69 × 10−12 0.26952 5.04 × 10−2

8 CCDC169 0.31 8.85 × 10−10 0.01913 4.53 × 10−2 LOC389493 0.21 1.52 × 10−10 0.16663 5.12 × 10−2

9 GNG3 0.18 1.85 × 10−10 0.20838 5.94 × 10−2 SRD5A1 0.32 2.25 × 10−11 0.01056 1.12 × 10−1

10 GAS7 0.28 1.91 × 10−8 0.03356 6.07 × 10−2 PSMD5* 0.30 9.46 × 10−11 0.00949 1.25 × 10−1

geff, Gene-specific effect estimate (h2geff ); geff_p, significance of the gene-specific effect estimate; h2r, trait heritability estimate (h2r ); h2r_p, significance of the

trait heritability estimate.

*Known causal gene for SBP_1 in the simulated data set.
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using the intragenic and nonsyn strategies (see Figures 1
and 2), with other causal genes ranking within our first
top 10 results. This seems to suggest that our test is
sensitive and specific enough for the detection of true-
positive signals without enrichment of false-positive
ones.
As a consequence of using a different strategy to

select the SNPs for the estimation of the empirical
GSRM, our results for MAP4 improved. MAP4 results
were an order of magnitude less significant for the intra-
genic than for the nonsyn strategy. We believe that this
is the result of rare functional alleles driving the EKE of
the GSRM matrices for the nonsyn strategy without the
noise introduced by shared noncoding alleles. In effect,
the nonsyn GSRM matrices better approximate the
gene’s probability of identity-by-descent sharing, thus
making our test a gene-specific empirical test of linkage
that is also robust to the heterogeneity of the causal
variants.
Finally, we want to note that our method is not

restricted either to a particular measure of genetic iden-
tity or to its estimation on a gene-specific basis; iden-
tity-by-state and genomic regions, even if they are
nonsyntenic [13], can potentially be used instead.

Conclusions
We were able to obtain encouraging, proof-of-concept
results from the application of our method to GAW18
data. We observed differences between the TKEs and
their gene-specific empirical estimations. We obtained
genome-wide significant results on the SBP_1 simulated
trait for MAP4 that seem to indicate that our test is
both specific and sensitive enough, and which also

suggest that our method is behaving as a gene-specific
empirical test of linkage.
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