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Abstract

Current sequencing technology enables generation of whole genome sequencing data sets that contain a high
density of rare variants, each of which is carried by, at most, 5% of the sampled subjects. Such variants are
involved in the etiology of most common diseases in humans. These diseases can be studied by relevant
longitudinal phenotype traits. Tests for association between such genotype information and longitudinal traits
allow the study of the function of rare variants in complex human disorders. In this paper, we propose an
association-screening framework that highlights the genotypic differences observed on rare variants and the
longitudinal nature of phenotypes. In particular, both variants within a gene and longitudinal phenotypes are
used to create partitions of subjects. Association between the 2 sets of constructed partitions is then evaluated.
We apply the proposed strategy to the simulated data from the Genetic Analysis Workshop 18 and compare the
obtained results with those from sequence kernel association test using the receiver operating characteristic
curves.

Background
Rare variants have been speculated to be involved in the
etiology of complex human diseases [1]. Such diseases
usually progress over time so that measures of relevant
traits at different time points can provide information
on the disease development process. For example, the
Type 2 Diabetes Genetic Exploration by Next-genera-
tion sequencing in Ethnic Samples (T2D-GENES) Pro-
ject 2 aims to identify rare variants influencing
susceptibility to type 2 diabetes using information from
whole genome sequencing (WGS) and measurements of
related traits (such as blood pressure) at up to 4 time
points. Such WGS genotype and longitudinal phenotype
data present new challenges to commonly used statisti-
cal methods for association testing in genome-wide
studies.

Many genetic variants are rare variants (here we are
referring to rare variants with minor allele frequencies
[MAFs] <5%). Because of their low MAFs, traditional
association methods may suffer from low power. A nat-
ural idea for improving power is grouping or collapsing
together certain variants. Such collapsing methods are
based on the assumption that rare variants in a group
(eg, gene or pathway) may function in combination [2].
For example, the sequence kernel association test
(SKAT) [3] assigns different weights to variants in a
region and incorporates them into a kernel matrix. We
have proposed an inverse-probability weighted clustering
approach [4], a gene-based method where inverse-prob-
ability weighting is used to overweigh genotypic differ-
ences observed on rare variants. The above methods can
deal with both continuous and dichotomous traits and
have obtained insightful results in different studies. How-
ever, leveraging them in an effort to efficiently address
longitudinal traits remains a major obstacle.* Correspondence: tzheng@stat.columbia.edu

1Department of Statistics, Columbia University, 1255 Amsterdam Avenue,
New York, NY 10027, USA
Full list of author information is available at the end of the article

Liu et al. BMC Proceedings 2014, 8(Suppl 1):S47
http://www.biomedcentral.com/1753-6561/8/S1/S47

© 2014 Liu et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://
creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:tzheng@stat.columbia.edu
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Longitudinal traits (ie, time-series phenotypes) provide
valuable information regarding the progression of dis-
eases. Traditionally, such longitudinal data can be ana-
lyzed using the so-called cross-sectional strategies. In
particular, such methods involve repeating the same ana-
lysis at various, specific points in time. Since at each time
point the trait under consideration reduces to a scalar,
methods such as inverse-probability clustering can be
conducted for association screening. Then, variants can
be selected based on the results from each time point.
The assumption underlying this type of strategy is that
genetic variants maintain similar influences at different
time points. However, it is more likely that those variants
influence the pattern of the traits across time; for exam-
ple, a group of variants may affect how blood pressure
changes in a time-dependent manner. Cross-sectional
analysis may fail under such circumstances. A method
that takes full consideration of the longitudinal nature of
traits is thus desired to capture such genetics-time
interactions.
In this paper, we propose a dual-clustering framework,

which highlights both rare variants and the longitudinal
structure of traits. By “dual” clustering, we mean indivi-
duals are clustered based on both genotypic information
through inverse-probability weighting and longitudinal
traits through ordinary hierarchical clustering. Associa-
tion between the 2 sets of partition labels can then be
readily evaluated using existing single-marker and sca-
lar-trait association methods, such as one-way analysis
of variance (ANOVA) or the partition retention (PR)
method [5,6]. We apply the proposed approach to the
simulated data of the Genetic Analysis Workshop 18
(GAW18) and compare the obtained results with those
obtained by SKAT. The comparison produces some
interesting findings.

Methods
Data set
The simulated data set of GAW18 is a combination of
real WGS data and simulated longitudinal traits. The
sequence data is drawn from T2D-GENES Project 2. In
this paper, we use the dosage genotype data on chromo-
some 3, which include 773,088 single-nucleotide poly-
morphisms (SNPs) that can be mapped to the genome.
Two hundred phenotype sets were simulated based on
genotype data. For each simulated data set, we analyze
systolic blood pressure (SBP) and diastolic blood pressure
(DBP), each with measurements at 3 time points, for 849
related subjects. We map the SNPs to its host gene,
resulting in 1426 genes.

Inverse-probability clustering based on genotypes
Let gik = 0, 1, or 2 represent the number of minor alleles
at SNP k for individual i, and let pk be the observed

MAF of SNP k. We define the inverse-probability
weighted similarity score between individuals i and j
based on SNP k as:
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The definition in equation (1) highlights the influence
of rare variants, and the genotypic similarity on minor
alleles, but not that on major alleles [4]. For a given gene
G, the similarity between individuals i and j is defined as
the sum of the similarity scores on SNPs within that

gene: sim
(
i, j

)
=

∑
k∈G sim

(
i, j; k

)
. For the 849 indivi-

duals, pairwise similarity scores, sim(i, j)’s, are evaluated
first and then converted to a distance measure using the
transformation d

(
i, j

)
= −sim

(
i, j

)
+max

(
sim

(
i, j

))
, such

that the pair with the largest similarity has distance 0.
Other bounded monotone-decreasing transformations
can also be applied, such as exponential transformations
adopted in our previous work [4]. We then conduct hier-
archical clustering based on the above distances using
Ward’s method [7], and partition individuals into groups
by cutting the hierarchical clustering tree into a prespeci-
fied number of groups (we consider partition sizes of 5 to
10). Figure 1A providesan example using MAP4.

Hierarchical clustering based on longitudinal phenotypes
The main difficulty of dealing with longitudinal traits is
that most existing association methods only consider
scalar phenotypes. Thus it is natural to transform longi-
tudinal traits into some 1-dimensional summary statis-
tics. Here we adopt ordinary hierarchical clustering
using phenotype vectors and treat the resulting class
labels as a summary statistic. Because hierarchical clus-
tering uses the whole longitudinal trait as features, we
expect that it can capture the structure contained in the
phenotypes. In this study, we cluster the 849 individuals
into 2 groups. Results show that these 2 groups can be
treated as with high and low blood pressures (see Figure
1B). Our main focus here is a strategy that turns longi-
tudinal traits into 1-dimensional summaries. Other
dimension-reduction techniques can also be used for
this task. We choose to adopt hierarchical clustering for
illustration purpose here because of its simplicity, and
we get reasonable results (see Results).
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Association analysis based on obtained clusters
After clustering individuals based on both genotype and
phenotype, for each gene we test the association between
the corresponding 2 sets of partition indices. We con-
sider one-way ANOVA and the partition-retention
method [5,6]. The partition-retention method is based on
an association measure I being defined as between an
outcome variable Y and a partition Π. Specifically,

I =
∑

�i

ni
n

(
Ȳi − Ȳ

)2
s2/ni

, where ni is the number of indivi-

duals in partition element i, and Yi is the sample mean of
element i. Ȳ and s are the sample mean and standard
deviation of all n individuals, respectively. Here we take
the variable that indicates which cluster an individual is
in from longitudinal traits as Y. Intuitively, PR’s I as
defined above evaluates the amount of influence a parti-
cular gene has on the longitudinal trait indexed by Y.

Sequence kernel association test
We also analyze the data using the linear SKAT [3] for
comparison purpose. We briefly describe this method
here. Following the same notation, a similarity score
between individuals i and j based on SNP k can be
defined as: sim

(
i, j; k

)
= wkgigj, where wk is a weight for

the kthSNP. The weights (wks) are defined based on the
corresponding MAFs, such that the influence of rare
variants can be boosted, an idea morally similar to the

similarity scores defined in equation (1). For a particular
gene, similarity between 2 individuals can be defined by
the same summation as in our method.
SKAT uses the variance-component score statistic

based on the above similarity scores to test for associa-
tion between genotypic variants and a scalar trait. We
treat the cluster indices from the longitudinal traits as
the response variable in order to apply SKAT to GAW18
data. More details on SKAT can be found in Ref. [3].

Results
We first apply the proposed method to the WGS dosage
data including all the 773,088 SNPs and the SBP trait.
Three genes are discovered after Bonferroni correction,
of which 1 gene, Y_RNA, is significant in 15 of the 200
replicates. It turns out that this gene resides within
MAP4, which has the strongest signal in the simulated
model, and produces a noncoding RNA.
One reason for the relatively few significant genes

obtained above may be that there is a very high density
of variants within most genes. We then conduct similar
analysis using only SNPs with MAFs between 0.01 and
0.05 to increase power. SBP and DBP are regressed on
age, sex, age × sex, and medication, and the residuals
are used in the clustering analysis. For method compari-
son, we treat genes containing at least 1 causal SNP in
the simulated model as causal genes, resulting in 21

Figure 1 Clustering of individuals using SNPs with MAFs between 0.01 and 0.05 for MAP4.A, Shown are 10 clusters, with the numbers
at the top odds ratios within each partition block based on blood pressures. Each row is a SNP, and each column is an individual. SNPs
are ordered with decreasing MAFs (from top to bottom). Green vertical bars indicate subjects with higher blood pressures (see text). Genotype
aa is plotted in red, aA is plotted in blue, and AA is plotted in white (a denotes the minor allele). The partitions of the 849 individuals are
indicated by dotted lines. Most partition elements are driven by similarity on rarer SNPs but not on more common SNPs. B, Clustering of
individuals using their SBP curves from the first simulation. It can be seen that individuals are reasonably grouped into 1 high blood pressure
cluster and 1 low blood pressure cluster.
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genes for SBP and 26 genes for DBP. We compare the
receiver operating characteristic (ROC) curves by the pro-
posed dual-clustering framework and SKAT (Figure 2).
SKAT cannot get results for some of the replicates. It can
be seen from Figure 2 that all the 3 methods have rela-
tively low power, among which our dual-clustering
approach with PR’s I has a bigger area under curve (AUC).
Results are similar for other partition sizes resulted from
inverse-probability clustering.

Discussion
We propose a dual-clustering framework for gene-based
association analysis with WGS and longitudinal traits.
The first clustering is based on the inverse-probability
weighted similarities, which automatically increase
weights for rare variants. The similarity scores are calcu-
lated from empirical MAF estimates. If better estimates
are available, the proposed method can incorporate the
better estimates to achieve improved power. The second

clustering treats trait vectors of individuals as features,
which accounts for the longitudinal nature of the phe-
notypes. Individuals are then partitioned based on their
genetic similarity on the SNPs in a gene, as well as the
similarity of their traits. These 2 partitions are then
used to calculate association between a gene and a long-
itudinal trait.
Our proposed framework is actually quite general. We

define the similarity measure based on inverse-probabil-
ity weighting. Other similarity measures, such as the one
used in SKAT, can also be incorporated into our frame-
work. Other distance-based clustering approaches can be
adopted for the first clustering based on similarity mea-
sures. The proposed similarities can detect variants with
variable directions of the effects. For longitudinal traits,
we choose hierarchical clustering because of its simpli-
city. Hierarchical clustering does not take into account
the correlation induced by time. Considering there are
only 3 time points in the GAW18 data, we believe that

Figure 2 Average ROC curves across simulation replicates for 3 methods. Shown are results by 10 clusters using inverse-probability
weighting. Areas under the curve (AUCs) by different methods are compared using paired Wilcoxon signed rank tests based on the 200
replicates, with the resulting p values shown in the table below. fpr, ie, false positive rate, is the ratio of the number of claimed causal genes and
the number of true noncausal genes; tpr, ie, true positive rate, is the ratio of the number of claimed causal genes and the number of true causal
genes.
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not much information has been lost. If more time points
are available, time-series clustering methods can be used
(see Ref. [7] for a survey on commonly used time-series
clustering algorithms). More generally, we use clustering
as a means of summarization, so other summarization
strategies can also be integrated into the proposed frame-
work. After obtaining the 2 sets of clustering indices, any
association method can be used to measure the associa-
tion between them. In this paper, we choose ANOVA
and PR’s I. The obtained results are similar but a little
better than that from SKAT in terms of ROC curves (see
Figure 2). SKAT shows superiority to more traditional
methods in the simulation studies presented in Ref. [3].
Many of those traditional methods assume that causal
variants have effects with the same direction and magni-
tude, and do not consider the potential effects of rarer
variants to boost power. The purpose of the current
study is not to show the absolute superiority of our
method, but rather to present a general framework that
can incorporate different choices of similarities and asso-
ciation measures, such as that from SKAT.
Although the simulation model did not take family

structures into account, the ANOVA p values may be
inflated as a consequence of such structures. However,
p values will be inflated (if any) for both causal and non-
causal variants. Therefore, the main conclusion based on
ROC curves is still valid. In practice, we suggest evaluating
p values using permutations and controlling the false dis-
covery rate in order to have better sensitivity to real
genetic signals. This may introduce more computational
burden, but it is worth mentioning that the 2 clustering
tasks can be done independently and simultaneously so
that the computational time can be reduced. Multilevel
models with Markov chain Monte Carlo (MCMC) techni-
ques may also address the multiple comparisons problem
encountered here by partial pooling [8].

Conclusions
The methods we experimented on have relatively low
power on this particular data set. Our framework
obtains slightly better results in terms of AUC. It is
worth applying the proposed methods to other data sets
for a comprehensive understanding of its performance.
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