
PROCEEDINGS Open Access

Gene-based analysis of rare and common
variants to determine association with blood
pressure
Xiaofeng Liu, Joseph Beyene*

From Genetic Analysis Workshop 18
Stevenson, WA, USA. 13-17 October 2012

Abstract

Systolic blood pressure and diastolic blood pressure are known risk factors for cardiovascular diseases and
understanding their genetic basis will have important public health implications. For rare variants, it is extremely
challenging to make statistical inference for single-maker tests. Therefore, joint analysis of a set of variants has been
proposed. In this paper, we applied recently proposed methods “test for testing the effect of an optimally
weighted combination of variants” and “variable weight-TOW” to determine genetic regions that are associated
with blood pressure. Then least absolute shrinkage and selection operator, as well as sparse partial least square
methods, were used to identify significant markers within a gene or in intergenic regions. We investigated the
effect of rare variants and common variants, and their combined effect.

Background
It is well known that high blood pressure is an impor-
tant risk factor for cardiovascular diseases. Elevated
blood pressure is a complicated trait that affects more
than 30% of the adult population [1,2]. An increase in
systolic and diastolic blood pressure has a continuous
impact on the risk of cardiovascular diseases. Globally,
every year, high blood pressure contributes to approxi-
mately 13.5% of premature deaths, 54% of stroke, and
47% of ischemic heart disease [1,3]. Genetic heritance is
one of the major risk factors for hypertension. For com-
plex diseases, the common disease-common variant (CD-
CV) hypothesis that underpins genome-wide association
studies (GWAS) has led to the identification of several
novel susceptibility loci. However, a majority of the herit-
ability is unexplained. It has been pointed out that the
GWAS-identified variants can only explain a small por-
tion of the heritability; therefore, exploration is still
needed to unveil the undiscovered variants [12]. Recently,
arguments have been put forward against CD-CV, and

common disease-rare variants (CD-RV) as an alternative
has been proposed. It is based on the assumption that
the etiology for common diseases is caused by the cumu-
lative effect of multiple rare variants [4,5]. Nevertheless,
another merging hypothesis states that common diseases
are caused by the combination of common and rare
variants [6-8].
In this paper, we focused on identifying whether a gene

is associated with blood pressure. We applied recently
proposed tests called “test for testing the effect of an
optimally weighted combination of variants (TOW)” and
“variable weight-TOW (VW-TOW)” [9] to determine
significant genetic regions. Our interest also lies on iden-
tifying the associated variants for regions that are found
significantly associated by applying sparse methods Lasso
and SPLS [10,11].

Methods
Data
Both the real and simulated data that were made available
for Genetic Analysis Workshop 18 (GAW18) were used.
We focused on the genotype data on chromosome 3 for
unrelated individuals. The baseline data for the covariates
and the phenotypes were considered. We considered the
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first time point of systolic blood pressure (SBP) and dia-
stolic blood pressure (DBP) as the traits. We also used a
composite of the 2 phenotypes called the mean arterial
pressure, which is defined as (2/3)*DBP + (1/3)*SBP. For
the genotype data, we mapped single-nucleotide poly-
morphisms (SNPs) to the genes; the remaining SNPs that
do not belong to any genes, were grouped as intergenic
regions. A total of 2286 regions (consisting of 1224 genes
and 1062 intergenic regions) that include all the SNPs
were defined. The regions were further divided into “rare”
or “common” based on minor allele frequency (MAF)
threshold of 0.01.

Association tests
TOW and VW-TOW are recently proposed methods
that allow covariates and account for direction effects for
causal variants. Let Zi = (zi1, . . . , zip)T, Xi = (xi1, . . . , xiM)T

and yi be the covariates, genotype (coded 0, 1, 2) and phe-
notype for the ith individual, where p and M denote num-
ber of covariates and variants, respectively. The effects of
the covariates on yi and xim are adjusted by the residuals
of the following linear models

yi = α0 + α1zi1 + . . . + αpzip + εi (1)

and

xim = α0m + α1mzi1 + . . . + αpmzip + τim. (2)

The methods are based on the optimal weighting

scheme, which is defined as wo
m =

∑n
i=1(ỹi − ỹ)(x̃im − x̃m)∑n

i=1 (x̃im − x̃m)
2 ,

where ỹi and x̃im denote the residuals from equations (1)
and (2) for the ith individual respectively. Let

xoi =
∑M

m=1
wo
mx̃im. The test statistics for TOW is defined

as TTOW =
∑n

i=1(ỹi − ỹ)(xoi − xo). For VW-TOW, let Tr
and Tc denote the test statistics of TOW for rare and com-

mon variants, Tλ = λ
Tr√

var(Tr)
+ (1 − λ)

Tc√
var(Tc)

and pλ

be the p value of Tλ. The test statistics for VW-TOW is
defined as TVW−TOW = min0≤λ≤1 pλ = min0≤k≤K pλk,
where λk = k/K for k = 0, 1, · · · , K. The p values are evalu-
ated by permutation.
After identifying the significant genomic regions, we

further investigated the SNPs that have important con-
tribution to the phenotypes for the significant regions
by variable selection methods Lasso and SPLS, which
are available in the R package: “RV tests.” Because this
package does not allow covariates, we adjusted the effect
of environmental factors using the linear model shown
in equation (1). Instead of the observed trait, the resi-
duals from the linear model are treated as the
phenotype.

A summary of the steps we followed for real data
Step 1: Map the SNPs to gene and intergenic regions
based on the annotation file refGene.txt.gz (available
from http://hgdownload.cse.ucsc.edu/). Then the genes
or intergenic regions were further divided into subre-
gions ("rare” vs. “common”) based on a threshold of
MAF = 0.01.
Step 2: Extract the genotype, phenotype (baseline mea-

sures) and covariates (baseline measures) data for the
unrelated individuals. Remove the participants that have
missing variables in phenotype or covariates data.
Step 3: TOW and VW-TOW are applied to identify

the regions that are associated with the traits.
Step 4: Apply Lasso and SPLS to the regions to discri-

minate the associated variants from noise (using the R
package “RV tests”).

Results
Real data
The sample used in our analysis is made up of 142 inde-
pendent individuals. After removing missing variables,
129 subjects were analyzed. There are, in total,
1,215,296 markers on chromosome 3; approximately
one-sixth of the markers were removed as a result of
zero variation across the 129 independent samples.
The association tests (TOW and VW-TOW) were

applied to each genetic region for SBP, DBP, and mean
arterial pressure (MAP) on chromosome 3. Both tests
produce an empirical p value, based on 10,000 permuta-
tions for each region. Figure 1 displays the p value plot
for DBP, where the x-axis denotes the position of the
genes in original order on chromosome 3. The p values
for intergenic regions are not included in Figure 1. By
parallel comparison, we can see that effects of the genes
are caused by the rare variants or the common variants.
We note that there is a small cluster of genes that
appear highly significant around the 440th region in the
upper and lower plots.
After obtaining all the p values, regions that have

strong association with the traits are picked according
to the ranking of the p values. We decided to set the
significant level threshold to be 0.001, so as to be more
selective. Genes are only selected if they satisfy this cri-
terion for the trait using both TOW and VW-TOW.
Table 1 lists the regions that appear to be potentially
important. For SBP, there are 3 genes; 2 genes with
common variants only and 1 gene with rare variants
only are highly associated with the trait. For MAP there
are 4 genes when a combined analysis of “rare” and
“common” variants is done, and 2 genes are significant
with common variants only. For DBP, the number of
significant regions is greater than the other 2 traits. For
this trait, not only variants that belong to genes, but
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also variants in intergenic regions exhibit strong
association.
As mentioned earlier, there is a cluster of regions

(shown in Figure 1) that show strong significance for
DBP. The region names are: TWF2, PPM1M, region
between PPM1M and WDR82, WDR82, region between
WDR82 and GLYC7K, GLYC7K, region between
GLYC7K and DNAH1, BAP1, PHF7, SEMA3G, and
TNNC1. The above regions all fall inside the physical
location range of (52262625, 52488057).
Then variable selection methods Lasso and SPLS are

applied to the regions that are picked at the gene (or
region) level. Table 1 also summarizes the numbers of
significant markers that were selected using these sparse
methods. The number of selected markers can be varied
with different choice of penalty parameter.

Simulated data
In stage I, we focused on the top significant genes on
chromosome 3, which are MAP4, FLNB, and ABTB1, with
common and rare variants combined. We analyzed all 200
replicates with the target genes to assess the power of
TOW and VW-TOW. MAP4 has large effect on both SBP
and DBP, whereas FLNB and ABTB1 have small effects on
SBP only. We adjusted the phenotypes by all the covariates

at baseline. Table 2 reports the results. We can see that
both methods have very poor power when the variants are
all rare in the genes. Table 2 does show, however, that
TOW has better performance than VW-TOW in most
cases. MAP shows better power than the other 2 pheno-
types. In the cases of small effect size, the power is very
low for both TOW and VW-TOW.
In stage II, we assessed the performance of Lasso and

SPLS by analyzing all 200 replicates on MAP4 with all
the variants. There are 6 target SNPs in MAP4, but 1 of
the SNPs is removed because of monomorphism. The
location numbers of the 5 SNPs are 48040283, 47957996,
47956424, 48040284, and 47913455. Both Lasso and
SPLS are variable selection methods. With the careful
selection of the penalty parameters for both methods, on
average approximately 5 variants are selected with every
replicate. Table 3 shows the results. We can see that
using MAP as phenotype demonstrates higher power
than using SBP or DBP. Lasso and SPLS have very poor
power to detect 47956424 and 47913455.

Discussion
Most recently proposed methods assign large weights to
rare variants and small weights to common variants,
resulting in low power. On the other hand, TOW and

Figure 1 p value plot for DBP (rare variants); p value plot for DBP (common variants); and p value plot for DBP (combined).
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VW-TOW assign corresponding weight, which can
account for the direction effect, to individual variants.
The methods outperform some currently popular meth-
ods, such as Combined Multivariate and Collapsing
(CMC) and sequence kernel association test (SKAT), in

various scenarios [9]. In addition, both TOW and VW-
TOW can be modified to account for population strati-
fication using principal component approach.
Overall, we were able to detect some significant genes

based on association tests (TOW and VW-TOW) with

Table 1 Common, rare and total number of variants identified by LASSO, SPLS and by both methods.

Common variants Rare variants Combined variants

Trait Region A B C D Region A B C D Region A B C D

SBP LAMP3 167 28 21 2 TP63 485 109 94 31 LAMP3 267 18 21 2

LIMD1 371 20 39 15 LIMD1 538 88 39 18

RAP2B 15 1 1 1

DBP Inter-530 315 72 104 29 BAP1 24 7 8 7 BAP1 30 8 9 8

CTDSPL 277 20 19 14 Inter-378 42 10 10 7 CCCDC66 373 42 57 20

SLC25A36 88 7 6 6 Inter-896 23 4 8 4 Inter-376 10 1 2 1

Inter-898 55 8 14 8 Inter-377 41 5 8 4

CPB1 52 3 7 2 Inter-378 75 11 10 7

DNAH1 211 40 41 16 Inter-896 47 4 8 4

E1F5A2 34 11 5 5 Inter-982 206 27 2 2

GLYCTK 13 4 5 4 CPB1 164 18 9 5

NCBP2 24 2 2 2 DNAH1 326 114 43 31

SEMA3G 30 7 8 5 EIF5A2 77 19 5 5

TNNC1 7 3 4 3 GLYCTK 25 4 5 4

WDR82 36 11 12 10 PHF7 40 3 14 3

PIGZ 115 5 6 5

PPM1M 12 2 2 2

SEMA3G 42 7 8 5

TNNC1 10 3 4 3

TWF2 50 10 10 9

WDR82 73 11 12 10

MAP LAMP3 167 20 2 2 GP5 32 6 2 2

LIMD1 371 10 51 5 LAMP3 267 3 2 2

LIMD1 538 49 106 35

RAP28 15 2 2 1

A, number of total variants; B, number of variants selected by LASSO; C, number of variants selected by SPLS; D, number of variants selected by both LASSO and SPLS;
Inter-376, region between PPMIM & WDR82; Inter-377, region between WDR82 & GLYCTK; Inter-378, region between GLYCTK & DNAH1; Inter-530, region between
NXPE3 & LOC152225; Inter-896, region between RPL22L1 & EIF5A2; Inter-898, region between SLC2A2 & TNIK; Inter-982, region between ST6GAL1 & RPL39L

Table 2 Power of TOW and VW-TOW to detect MAP4, FLNB, and ABTB1

Power (MAP4) Power (FLNB) Power (ABTB1)

Traits TOW VW-TOW TOW VW-TOW TOW VW-TOW

Gene (combined) SBP 0.32 0.265 0.02 0.015 0.095 0.07

DBP 0.325 0.26

MAP 0.435 0.35

Gene (rare) SBP 0.035 0.03 0.005 0.01 0.095 0.075

DBP 0.06 0.06

MAP 0.05 0.045

Gene (common) SBP 0.335 0.29 0.03 0.045 0.08 0.075

DBP 0.345 0.245

MAP 0.445 0.33
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SBP, DBP, and MAP. Although we used Lasso and SPLS
only as variant selection methods, they can also be used
to do the association test for genotype with complex
traits. However, both Lasso and SPLS are very computa-
tionally intensive. In addition, our analysis is focused on
the independent subjects only, which limits our sample
size. For future study, it is essential to incorporate
family structure that not only increases the size of the
sample available for analysis, but also the number of
variants. Because SBP and DBP are correlated, it is defi-
cient to analyze them separately. MAP, which is a com-
bination of SBP and DBP, has better power than SBP
and DBP separately.
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Table 3 Power of Lasso and SPLS to select significant variants

Power for each SNP(MAP4)

Traits 48040283 47957996 47956424 48040284 47913455

LASSO SBP 0.53 0.255 0 0.38 0.065

DBP 0.5 0.22 0 0.305 0.06

MAP 0.705 0.265 0 0.52 0.075

SPLS SBP 0.75 0.545 0.015 0.215 0.015

DBP 0.66 0.43 0.01 0.185 0.03

MAP 0.835 0.66 0.005 0.265 0.025
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