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Abstract

As the cost of DNA sequencing decreases, association studies based on whole genome sequencing are now
becoming feasible. It is still unclear, however, how much more we could gain from whole genome sequencing
compared to exome sequencing, which has been widely used to study a variety of diseases. In this project, we
performed a comparison between whole genome sequencing and exome sequencing for family-based association
analysis using data from Genetic Analysis Workshop 18. Whole genome sequencing was able to identify several
significant hits within intergenic regions. However, the increased cost of multiple testing counteracted the benefits
and resulted in a higher false discovery rate. Our results suggest that exome sequencing is a cost-effective way to
identify disease-related variants. With the decreasing sequencing cost and accumulating knowledge of the human
genome, whole genome sequencing has the potential to identify important variants in regulatory regions typically

inaccessible for exome sequencing.

Background

Over the past few years, genome-wide association studies
(GWAS) have successfully identified thousands of genetic
loci associated with a variety of diseases and phenotype
traits [1]. However, because of the limited resolution of
microarray-based genotyping platforms, a vast majority
of the human genome is not yet genotyped directly in
GWAS. Since 2004, the advance of next-generation
sequencing technologies has substantially lowered the
cost of DNA sequencing. Nevertheless, it is still expensive
to perform whole genome sequencing on a large cohort
of samples, so reducing the cost by sequencing the most
informative regions is a desirable approach. The human
exome consists of 1% of the human genome but harbors
85% of disease-related variants [2]. Therefore, the cost of
exome sequencing is typically only one-sixth that of
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whole genome sequencing [3]. Several commercial
exome-capture platforms are currently available, each
with a different design focus [4-6].

It is, however, still unclear whether exome sequencing
is able to capture genetic variants associated with com-
plex diseases. The objective of this project is to examine
how much we could gain from exome sequencing com-
pared with whole genome sequencing.

Methods

For this study, we used a pedigree-based sample from the
Type 2 Diabetes Genetic Exploration by Next-Generation
Sequencing in Ethnic Samples (T2D-GENES) Consor-
tium provided by the Genetics Analysis Workshop 18
(GAW18). Whole genome sequence data was available
for 959 participants from 20 families; 464 participants
were directly sequenced and 495 were imputed from
GWAS data. This data was cleaned of Mendelian errors
prior to distribution. A total of 8,348,674 single-nucleo-
tide polymorphisms (SNPs) were identified across all the
odd-numbered chromosomes. Among them, 4,152,114
were common variants with a minor allele frequency
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(MAF) >1%. In addition, 425,734 common variants were
identified by GWAS.

The data set contains phenotypes measured at 4 exams.
At each exam, the following characteristics were
recorded: age, hypertension, systolic blood pressure
(SBP), diastolic blood pressure (DBP), use of blood pres-
sure medications, and smoking status. Hypertension is
associated with a variety of diseases, such as stroke [7],
diabetes [8], and heart failure [9]. The use of blood pres-
sure medications would counteract the effect of genetic
variations and introduce bias to the association analysis,
so we excluded subjects using blood pressure medica-
tions or without covariate information.

This project used SBP at the baseline exam as the pri-
mary outcome, both for real and simulated phenotypes.
The data was preprocessed using the PLINK software
package [10]. Our model included SBP as the response
variable and genotype data as the independent variable
adjusting for age, gender, and smoking status. To account
for family structure, we used a linear mixed-effects model
as implemented in the “kinship” R package. The func-
tional implication of genetic variations was predicted by
ANNOVAR [11].

Because only the whole genome sequence was avail-
able, we mimicked the exome sequence by restricting the
analysis to targeted regions designed by the 3 most com-
mon commercial exome capture platforms, Agilent Sure-
Select Human All Exon 50Mb, NimbleGen SeqCap EZ
Exome Library v2.0, and Illumina TrueSeq Exome
Enrichment. We assumed all the SNPs within the tar-
geted regions were successfully captured. (Table 1 lists
the number of SNPs captured by each exome platform.)
On average, each platform captured approximately
133,000 SNPs, or approximately 1.6% of whole genome
sequencing.

Results

Figure 1 shows the Manhattan plot of common variants
across all odd-numbered chromosomes. A few peaks
could be observed in chromosomes 3 and 9, indicating
that the variants at these loci might be associated with

Table 1 Number of variants captured by each platform

Platform Number of Number of common

variants variants

Whole genome 8,348,674 4,152,114

sequencing

Exome sequencing 129,204 58,091

(Agilent)

Exome sequencing 156,910 70,347

(Illumina)

Exome sequencing 113,150 50,000

(NimbleGen)

GWAS SNPs 453,285 425,734
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SBP. Table 2 lists the top 30 SNPs from whole genome
sequencing, and Table 3 lists the top 10 SNPs from
GWAS together with 3 exome-sequencing platforms.
The most significant SNP for the whole genome sequen-
cing is chr3:106206487 (rs2590204, p = 1.1 x 1077). The
SNP is located within a gene desert, and the closest
gene is CBLB, which encodes the E3 ubiquitin-protein
ligase. The remaining top SNPs are all located within
the introns or upstream of PSIP1, which is why they
were not captured by the 3 exome platforms. The most
significant SNP identified by all 3 exome platforms was
chr7:11022564 (rs218965, p = 8.8 x 1077), which is a
synonymous mutation in PHF14. GWAS was able to
pick up another SNP, chr9:15472139 (rs2777950, p =
7.5 x 1077), which is located within the introns of PSIPI.

Because we performed thousands of tests, it is likely
that many SNPs were false positives even if they reached
the nominal significance cutoff. The simplest way to
adjust for multiple testing is by Bonferroni correction
[12], which uses a cutoff equivalent to 0.05 divided by
the number of tests. So a SNP is claimed significant
only if its p value is less than 1.2 x 107® for the whole
genome sequencing. Given that less than 2% of SNPs
were tested in exome sequencing, the p value cutoffs
would be 8.6 x 1077, 7.1 x 1077, and 6.1 x 1077 for Agi-
lent, Illumina, and NimbleGen, respectively. For GWAS,
the p value cutoff would be 1.2 x 107", Given these cut-
offs, none of our top SNPs were significant.

However, Bonferroni correction is usually too conser-
vative because of the linkage disequilibrium between
SNPs. Several studies have been conducted to estimate
the appropriate significance cutoffs for genetic tests
[13-15]. Here we chose the false discovery rate (FDR)
[16] to control type I error. Table 4 shows the number
of significant SNPs that met different FDR thresholds in
each platform. With FDR <5%, all 3 exome platforms
had 2 significant SNPs, whereas none of GWAS SNPs
or whole genome SNPs were significant. With the
increasing FDR, we observed that more SNPs became
significant. The most significant SNP for whole genome
sequencing reached 13% of FDR. The results can be
visualized in the Q-Q plots in Figure 2. Two SNPs in
exome sequencing obviously deviated from the diagonal
line, suggesting that they were significantly associated
with SBP. Such deviation is absent from the whole gen-
ome sequencing. No inflated type I error was observed
in all the platforms because the genomic control A was
close to 1.

We also performed association tests on the 200 simu-
lated SBP phenotypes. The analysis was limited to SNPs
at chromosome 3 because of the computational burden.
On average, whole genome sequencing identified 163 sig-
nificant hits per run, whereas exome sequencing identi-
fied 10, 7, and 7 for Agilent, Illumina, and NimbleGen,
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Figure 1 Manhattan plot of common variants associated with SBP. Red line is the Bonferroni p value cutoff.
.
Table 2 Most significant variants in whole genome sequencing
Rank SNP p Value Function Rank SNP p Value Function Rank SNP p Value Function
1 3:106206487 1 Intergenic M 5:144654771 5.3E-07 Intergenic 21 7:11022564 8.8E-07 Exonic
2 9:15503905 1.3E-07 Intronic 12 17:63733954 53E-07 Intronic 22 7:11025635 8.8E-07 Intronic
3 9:15500315 19E-07 Intronic 13 9:15396745 5.5E-07 Intergenic 23 7:11027754 8.8E-07 Intronic
4 9:15501713 19E-07 Intronic 14 9:15527348 6.7E-07 Intergenic 24 7:11016614 94E-07 Intronic
5 9:15501753 1.9E-07 Intronic 15 9:15501422 7.1E-07 Intronic 25 7:11008221 1.0E-06 Intergenic
6 9:15500150 2.8E-07 Intronic 16 9:15472139 7.5E-07 Intronic 26 9:15459251 1.0E-06 Intronic
7 9:15528010 3.1E-07 Intergenic 17 15:92024157 7.5E-07 Intergenic 27 7:11022230 1.0E-06 Exonic
8 9:15482976 3.3E-07 Intronic 18 9:15396695 84E-07 Intergenic 28 7:11025638 1.1E-06 Intronic
9 9:15498495 3.7E-07 Intronic 19 7:11016690 8.8E-07 Intronic 29 7:11015444 1.1E-06 Intronic
10 9:15466033 4.0E-07 Intronic 20 7:11018224 8.8E-07 Intronic 30 9:15397233 1.1E-06 Intergenic

Table 3 Most significant variants in exome sequencing and GWAS
Rank GWAS SNPs Agilent lllumina NimbleGen
SNP p Value  Function SNP p Value  Function SNP p Value Function SNP p Value Function
1 9:15472139  7.5E-07  Intronic 7:11022564  8.8E-07 Exonic 7:11022564  8.8E-07  Exonic 7:11022564  8.8E-07  Exonic
2 7:11022564  8.8E-07 Exonic 711022230 1.0E-06 Exonic 7:11022230  1.0E-06  Exonic  7:11022230 1.0E-06  Exonic
3 7:11008221  1.0E-06 Intergenic  9:15468480 4.4E-06  Intronic 7:94927677  2.9E-06 UTR3 9:15571630  3.2E-05  Exonic
4 711022230 1.0E-06 Exonic 741661724 29E-05 Intergenic  7:.94921491  8.3E-06 UTR3 9:14863863  7.2E-05  Exonic
5 7:11015444  1.1E-06  Intronic 9:15571630  3.2E-05 Exonic 9:15571630  32E-05  Exonic  3:125859012 74E-05 Intronic
6
7
8
9

9:15528290  1.1E-06 Intergenic 3:184766392 39E-05  Intronic  3:184770380 3.9E-05 UTR3 17:64210580 7.5E-05  Exonic
9:15443430  14E-06  Intronic  3:184769911  4.5E-05 UTR3 3:184769911  4.5E-05 UTR3 744608718  7.9E-05 Intronic
9:15469733  1.7E-06  Intronic  3:184769941  4.5E-05 UTR3 3:184769941 4.5E-05  UTR3  1:212798260 1.0E-04  Exonic
3:106199956 22E-06 Intergenic  9:14863863  7.2E-05  Exonic 7:94921543  68E-05  UTR3 12210761365 1.2E-04  Exonic
0 915446868 2.3E-06 Intronic  17:64210580 7.5E-05 Exonic 9:14863863  7.2E-05  Exonic 72414142 12E-04 Intronic
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Table 4 Number of SNPs passing FDR threshold in each platform
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Figure 2 Q-Q plots of common variants associated with SBP for whole genome sequencing and exome sequencing

respectively. However, because over 50 times more SNPs  Discussion

were tested, whole genome sequencing did not show a  In this project, we compared the performance of whole
significant advantage over exome sequencing in terms of  genome sequencing with exome sequencing in a family-
identifying independent loci. based association study. After correcting for multiple
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testing, we did not find great benefit from whole gen-
ome sequencing compared to exome sequencing. Our
results suggest that exome sequencing is a cost-effective
way to capture disease-related variants. Given the lower
cost, exome sequencing allows a larger number of sam-
ples to be sequenced, which would significantly increase
the statistical power for association studies.

One advantage of exome sequencing is that it focuses on
the most informative proportion of the human genome.
Therefore, the results are quite straightforward to interpret.
It also lowers the requirement for computational resources
and data storage. For example, the volume of exome
sequence data is less than one-fifteenth that of whole gen-
ome sequence data. In addition, tools to efficiently analyze
whole genome sequencing are still at an early stage.

Nevertheless, exome sequencing also has several
intrinsic problems. Because of its heterogeneous capture
capability, exome sequencing might introduce bias as a
result of fragment size and GC content, which could
result in ambiguous mapping and reduce the depth of
coverage in the targeted regions. Exome sequencing also
has very limited power to detect structural variations
that are important to many diseases [17]. It is also
worth noting that most of high penetrance variants that
cause Mendelian diseases are very rare, thus association
analysis is usually not the best way to study these dis-
eases. Linkage analysis traditionally has been used for
the purpose. Given that many common variations were
located outside of the exome, whole genome sequencing
would provide a better resolution for linkage analysis.
We anticipate that the decreasing cost of sequencing
and recent efforts to annotate the functional genome
(eg, the ENCODE project [18]) will make whole genome
sequencing more attractive and eventually lead to the
retirement of exome sequencing.

Conclusions

Exome sequencing is an effective method to identify dis-
ease-related variants in family-based association studies.
As the cost of sequencing drops and our knowledge of
the functional genome improves, we anticipate that
whole genome sequencing will prove to be a better solu-
tion for future genetics research.
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