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Abstract

alternatives.

Until very recently, few methods existed to analyze rare-variant association with binary phenotypes in complex
pedigrees. We consider a set of recently proposed methods applied to the simulated and real hypertension
phenotype as part of the Genetic Analysis Workshop 18. Minimal power of the methods is observed for genes
containing variants with weak effects on the phenotype. Application of the methods to the real hypertension
phenotype yielded no genes meeting a strict Bonferroni cutoff of significance. Some prior literature connects 3 of
the 5 most associated genes (p <1 x 107 to hypertension or related phenotypes. Further methodological
development is needed to extend these methods to handle covariates, and to explore more powerful test

Background

The advent of next-generation sequencing technology
has allowed researchers to actively consider the impact of
rare genetic variation on common disease. However,
novel statistical methodologies have been needed to
leverage the limited evidence provided by any single-
nucleotide rare genetic variant (SNV). Two major classes
of tests, collapsing and variance components, have been
proposed for testing case-control association (see Ref. [1]
for an overarching framework that classifies and
describes the general behavior of the tests). Virtually all
of the recently proposed methods use the gene as the
unit of analysis with the goal of aggregating independent
genotype-phenotype association signals across the set of
SNVs in the gene to boost statistical power versus the
limited potential power from individually testing millions
of SNVs, many of which may be extremely rare (eg, sin-
gletons). This SNV-set testing approach is not only statis-
tically reasonable, it is also biologically plausible, because
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it may be that separate, independent variations within the
protein encoding region of a gene could alter protein
structure and, ultimately, explain phenotypic diversity.

Practically, however, many of these methods have
shown limited utility to date. Arguably, this limitation is
the result of a host of factors, the most significant of
which is the lack of power that results from testing extre-
mely rare genetic variations in case-control samples.
With this in mind, family-based study designs are
increasingly being considered in an effort to potentially
gain a better understanding of the role that rare genetic
variation plays in explaining the heritability of common
disease.

Despite this renewed interest in family-based designs,
few multimarker, rare-variant association tests for family-
based data are available. We now briefly describe some
recently proposed methods in an effort to identify meth-
ods appropriate for analyzing a categorical phenotype
(hypertension) for relationships with rare variants in arbi-
trarily complex pedigrees (eg, multigenerational, not
nuclear, family) as required for our analysis of the Genetic
Analysis Workshop 18 (GAW18) data. Two recent papers
[2,3] propose methods of analyzing rare variants for quan-
titative traits in nuclear families. However, the methods
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described are not applicable to binary traits or more com-
plex pedigrees. Another recent paper proposed a method
that utilizes family data to estimate SNV weights when
testing case-control data, but the family data is used only
to estimate weights, and case-control data is required to
use the method [4]. Recently, Schifano et al [5] extended
the popular SNV-set testing methods based on the kernel
machine framework, used for both common and rare-
variant tests of association. This paper does not reference
software, so we do not consider it in this analysis.

The only paper containing methods meeting our criteria
for inclusion (binary phenotypes, complex pedigrees, and
available software) is by Zhu and Xiong [6], who propose a
set of methods that are applicable for categorical traits in
complex pedigrees. Their methods generally can be
described as adjusting the standard error of the null distri-
bution using the kinship matrix in order to account for
the additional correlation observed in the sample as a
result of the complex pedigree structure.

In this paper, we will apply the methods of Zhu and
Xiong to investigate potential relationships between
simulated and real phenotypes and genes, where genes
consist of sets of SNVs within the gene. In particular, we
are curious about the ability of the methods to maintain
type I error and yield reasonable power for simulated
phenotypes. Furthermore, through our analysis of the
real phenotype, we will explore potential insights into
disease etiology for hypertension using the GAW18 data.

Methods

Sample and genes

In the GAW18 data, real phenotype data was available
for 855 individuals in pedigrees. We classified each of
the 855 individuals as either ever-hypertensive or not-
ever-hypertensive based on whether the individual was
classified as hypertensive at any of up to 4 measure-
ments (waves) at which phenotypic data was collected.
At 849 individuals, the simulated phenotype sample was
slightly smaller. When analyzing the simulated pheno-
type, we again focused on the (similarly defined) hyper-
tension phenotype. In the GAW18 data, there were 200
separate phenotype simulations. Our analysis considers
only simulated phenotype #1.

SNVs were mapped to genes using a custom imple-
mentation of ANNOVAR, where an SNV is assigned to a
gene if it is contained within the start-stop position of
the gene [7]. To improve computational time in this pre-
liminary analysis, we restricted the analysis to 6625 genes
containing between 2 and 200 SNVs.

Statistical tests

We applied 3 different family-based tests of association
considered by Zhu and Xiong [6]. The following sections
briefly summarize the methods. All tests were conducted
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using software provided by Zhu and Xiong, which is writ-
ten in R, with further data analysis conducted using our
own custom R scripts. Most of the methods considered
by Zhu and Xiong utilize a correction factor, P,,,,, which
summarizes the additional correlation in the samples
occurring because of the complex pedigree structure.
P_,,, is a function of 2 times the kinship matrix. We used
2 approaches to compute the kinship matrix: (a) the the-
oretical kinship matrix as computed using the kinship2 R
package based on stated genetic relatedness of the indivi-
duals from GAW18 documentation and (b) the estimated
kinship matrix computed by estimating genetic relation-
ships across 732,185 SNVs randomly sampled across the
genome using KING [8]. We briefly describe each test
below.

The generalized T? test

Zhu and Xiong [6] propose a generalized T test, which
is a multivariate test comparing the mean allele counts
across ¢t variants (eg, SNVs within a gene) between the
cases and controls; it is a multivariate version of the 2-
sample t-test. Li and Leal [9] considered the T test for
case-control data. Zhu and Xiong prove that dividing
the 77 test statistic by P, properly accounts for the
pedigree structure yielding a ¢ df chi-squared test statis-
tic assuming additive polygenic inheritance.

Combined multivariate and collapsing test for families

Of course, the downside to the 77 test is that in the pre-
sence of rare variants there can be power loss from the
large number of rare variants (f) present, and the
asymptotic distribution of the statistic may not be valid
when many extremely rare variants (eg, singletons) are
present. Thus, Li and Leal [9] proposed the combined
multivariate and collapsing (CMC) test whereby SNV
with minor allele frequencies (MAFs) below a particular
threshold are “collapsed” into a single super variant. The
generalized T” test is then applied to the (partially) col-
lapsed data (the super variant plus all individual variants
above the threshold). Zhu and Xiong show that, similar
to the T test, adjusting the CMC T statistic using P,
properly accounts for the pedigree structure. In our
implementation of CMC, we used 2 MAF cutoffs: 5%
and 0.5%.

Xmin2

For comparison, Zhu and Xiong also consider taking the
minimum p value from all single-marker tests within
the gene. Zhu and Xiong compute a single-marker
p value using either a Pearson y? test or Fisher’s exact
test (depending on sample size) and then adjusting the
p value using P,,,. To generate a gene-based p value,
we follow Zhu and Xiong and use the minimum p value
across all variant sites within the gene. However,
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because we do not correct for multiple testing, we
expect the type I error rate to be inflated using this
approach.

Results

Our analysis consisted of 2 main parts: using the simu-
lated phenotype and using the real phenotype to investi-
gate potential genotype-phenotype relationships in the
sample. The results section is structured accordingly.

Simulation results

We started by applying each of the tests described above
to all 6625 genes, in particular, testing for association
between the genotypes of the SNVs in each gene with
the simulated hypertension phenotype. Table 1 shows
the results of this analysis stratified by whether the gene
does (171 genes) or does not (6454 genes) contain at
least 1 causal SNV. Table 1 provides the percent of sig-
nificant SNVs for genes containing both causal and non-
causal SNV rates using a nominal a = 0.05.

As expected, Xmin? does not properly control the type I
error rate, but tests using the estimated kinship provide
good control of the type I error rate, and tests using the
real kinship matrix (ie, the kinship matrix based on sta-
ted relationships) appear slightly conservative. Overall,
the p values from the tests using the real and estimated
kinship matrices are highly correlated (Pearson and
Spearman correlations are all 0.99), with the estimated
kinship matrices providing lower p values on average.
Thus, we will use the estimated kinship matrix for all
subsequent analyses. Because of the inability of Xmin? to
control the type I error rate, we do not consider that
test in further analyses. Across all 6625 genes the Pear-
son correlation between p values from T? and CMCjsy
was 0.55 (Spearman = 0.54); between T and CMCy 5
0.8 (Spearman = 0.80); and 0.67 between CMCs,, and
CMCy 5y (Spearman = 0.67).

Table 1 also illustrates that the power across the 171
genes that contain at least 1 causal SNV is essentially
equivalent to the type I error rate. The low power may
be attributed in part to the fact that the average variance
in blood pressure explained by the causal SNVs in these
genes was only 0.04% (SD = 0.1%, range: 0% to 0.9%).
However, there was modest overlap in the causal genes

Table 1 Percent of significant genes at a = 0.05

Page 3 of 5

identified as significantly associated with the phenotype.
For example, when using the estimated kinship matrix, 1
causal gene, EPHA4, had a p <0.05 for all 3 approaches,
which controlled the type I error rate (T2, CMCsy, and
CMCj 5%). Of the remaining genes identified as signifi-
cant by at least 1 of these 3 methods, most (6 of 10) had
p values less than 0.10 for 1 of the other 2 methods, and
all 10 had p values less than 0.18 for at least 1 of the
other 2 methods.

Real data analysis

When we applied the 3 remaining tests to the real hyper-
tension phenotype on the entire sample of 855 indivi-
duals using the estimated kinship matrix, no minimum
p values were below a Bonferroni-corrected alpha value
of 0.05/6625 = 7.5 x 107° for the 6625 genes. The mini-
mum p value for any gene with CMCgo, was 1 x 10™*, For
T? there were 5 genes with p values less than 1 x 10™*
(MYBPHL, ZNF496, TRATI, DHX8, ST6GALNAC2),
with 1 of these (MYBPHL) being the only gene for
CMC 5% with a p value less than 1 x 10™%,

Discussion

Few methods currently allow for the analysis of binary
phenotypes with rare variants in complex pedigrees. We
have applied 4 of the published methods to both real and
simulated phenotypes. While the methods appeared to
control the type I error rate for smaller genes (less than
200 SNVs), they performed poorly (low power) when the
variance in blood pressure was small. Although this find-
ing is based on the simulation model for GAW18 data,
power to detect causal genes may still be a significant
hurdle in real analyses.

We considered the use of both the theoretical and esti-
mated kinship matrices. We found that use of the theore-
tical kinship matrix proved slightly overconservative,
while using the estimated kinship matrix provided
empirical type I error rates in line with the nominal
levels. Even though the precise reasons for the overcon-
servative nature of the theoretical kinship are unknown,
we surmise that cryptic relatedness and population strati-
fication between pedigrees, which are not reflected in the
theoretical kinship matrix, will be controlled through use
of the estimated kinship matrix. Because these issues may

6454 Genes not containing a causal SNV

171 Genes containing at least 1 causal SNV

Method Estimated kinship Real kinship Estimated kinship Real kinship
Xmin? 40.6% (2621/6454) 34.4% (2221/6454) 41.5% (71/171) 33.9% (58/171)
T 5.2% (333/6454) 3.2% (209/6454) 1.8% (3/171) 1.2% (2/171)
CMCso, 1% (267/6454) 3.3% (210/6454) 2.9% (5/171) 2.3% (4/171)
CMCo 506 5.3% (341/6454) 3.6% (235/6454) 2.9% (5/171) 2.3% (4/171)
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be present in any data set, we recommend estimating
kinship matrices in practical applications of family-based
tests of association for rare-variant data.

Even though minor differences in power existed across
the 3 tests considered here (T, CMCsy, and CMCy so),
each test will be most powerful for particular genetic
architectures. In particular, for truly causal genes the
proportions of causal rare or common variants versus
noncausal rare and common variants will determine
which method is best. Because the “best” method here
will be a product of the simulation strategy taken, we do
not wish to extrapolate this simulated genetic architec-
ture to suggest the use of one approach over the others.

A companion paper [10] demonstrates that the type I
error rate for all methods considered here occurs as the
number of SNVs in the gene increases beyond 200. This
inflation is partly caused by the small sample size (n =
855) relative to the large number of SNVs in these cau-
sal genes. We consider alternative approaches in Ref.
[10] for genes containing more than 200 SNVs.

In applying the 3 tests to the real phenotype, we found
modest evidence of a relationship between a handful of
genes and hypertension. These genes are featured in a
modest amount of prior literature, suggesting their
potential association with blood pressure, cardiovascular
development, and renal function. In particular, ZNF496
is associated with preeclampsia (ie, hypertension during
pregnancy) [11] and malignant pheochromocytoma
tumors, which can lead to malignant hypertension [12].
ST6GALNAC?2 is associated with susceptibility to IgAN,
which is commonly associated with hypertension (eg,
see Ref. [13]). MYBPHL is associated with low-density
lipoprotein (LDL) cholesterol [14]. TRAT1 and DHX8
have little exposure in the literature related to hyperten-
sion or related outcomes. We note, however, that none
of these genes reached a conservative (Bonferroni-cor-
rected) significance threshold, nor did we replicate
SNVs known to be associated with hypertension in large
genome-wide association studies.

In addition to the lack of power from small sample
size and, potentially, the choice of analysis methods, we
note that our approach did not consider covariates
because the methods considered in this paper do not
provide obvious approaches to control covariates. As
noted in the introduction, there is a dearth of methods
available for the analysis of data like that in GAW18,
and we know of few methods currently available that
work for analysis of rare variants with binary traits on
complex pedigrees, allowing for control of covariates
and for which software is publicly available. With
increased interest in family-based designs for the analy-
sis of rare-variant data, further methodological develop-
ment is needed in this area.
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Conclusions

The application of methods for the analysis of rare-var-
iant data collected on complex pedigrees for relationship
with a binary phenotype suggests the potential for mod-
est power for large variant effects with a sample of 855
individuals, but minimal power for variants and genes
with weaker effects. Application of the methods to a
real phenotype found modest evidence of association
between the hypertension phenotype and five genes,
three of which have limited prior association with
hypertension-related phenotypes. Further methodologi-
cal work is needed to develop more powerful methods
allowing for control of covariates in the analysis of com-
plex pedigrees and for use on larger genes.
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