Chen et al. BMIC Proceedings 2014, 8(Suppl 1):535

http://www.biomedcentral.com/1753-6561/8/51/535 BMC

Proceedings

PROCEEDINGS Open Access

Rare genetic variant analysis on blood pressure in
related samples

Han Chen"’, Seung Hoan Choi', Jaeyoung Hong', Chen Lu', Jacqueline N Milton', Catherine Allard?,
Sean M Lacey', Honghuang Lin®, Josée Dupuis'

From Genetic Analysis Workshop 18
Stevenson, WA, USA. 13-17 October 2012

Abstract

The genetic variants associated with blood pressure identified so far explain only a small proportion of the total
heritability of this trait. With recent advances in sequencing technology and statistical methodology, it becomes
feasible to study the association between blood pressure and rare genetic variants. Using real baseline phenotype
data and imputed dosage data from Genetic Analysis Workshop 18, we performed a candidate gene association
analysis. We focused on 8 genes shown to be associated with either systolic or diastolic blood pressure to identify
the association with both common and rare genetic variants, and then did a genome-wide rare-variant analysis on
blood pressure. We performed association analysis for rare coding and splicing variants within each gene region
and all rare variants in each sliding window, using either burden tests or sequence kernel association tests
accounting for familial correlation. With a sample size of only 747, we failed to find any novel associated genetic
loci. Consequently, we performed analyses on simulated data, with knowledge of the underlying simulating model,

to evaluate the type | error rate and power for the methods used in real data analysis.

Background
Despite the tremendous success of genome-wide associa-
tion studies (GWAS) to uncover genetic variants influen-
cing complex traits and diseases, only a fraction of the
total heritability of these traits is explained by the loci
identified so far. Because GWAS focuses on common
variants, a possible source of the missing heritability
might be rare variants that were not included in the ear-
lier genotyping platforms. The next logical step is to
investigate rare variants, an endeavor that is now possible
because of the ever-decreasing cost of sequencing.
Whole genome sequencing has the ability to uncover
rare variants, but brings its own challenges. Despite a low
error rate, the sheer number of base pairs sequenced
makes it hard to distinguish very rare mutations from
sequencing errors. Moreover, detecting association with
rare variants requires very large sample sizes. Several
methods to jointly analyze rare variants within a genomic
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region have been developed, however, and these methods
have the potential to pinpoint additional variants contri-
buting to the overall heritability of traits.

Blood pressure (BP) and hypertension are prime exam-
ples of the limitations of GWAS. Meta-analysis of GWAS
from a large number of cohorts has identified multiple
genetic loci over the genome that affect systolic blood
pressure (SBP), diastolic blood pressure (DBP), hyperten-
sion, or a combination of these traits [1,2]. However, the
loci identified to date explain only a small portion of the
total heritability in BP.

In this article, we investigate the association of rare var-
iants in genomic regions that have been previously impli-
cated by GWAS to identify the source of the original
GWAS signal and to discover additional genetic loci
influencing BP using either burden tests adjusting for
familial correlation (famBT) or sequence kernel associa-
tion tests (SKAT) [3] for family samples (famSKAT)
[4,5]. We also analyze rare variants genome-wide to
uncover additional genomic regions harboring suscept-
ibility variants. Finally, we use the simulated data sets
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with knowledge of the answer to evaluate type I error and
power for famBT and famSKAT in family samples.

Methods

We used imputed single-nucleotide polymorphism (SNP)
dosage files from odd-numbered chromosomes provided
by the Genetic Analysis Workshop 18 (GAW18) as our
genotypes in all analyses. For real data analysis, we took
baseline measurements of the covariates and traits for
each participant, defined as the first exam with nonmiss-
ing values for age, SBP, DBP, current use of hypertension
medications (BPmeds), and current smoking (smoke).
We removed participants with at least 1 missing value of
these variables in all 4 exams. We also excluded partici-
pants on antihypertensive medication at the baseline we
defined, resulting in a sample size of 747 participants.
Table 1 provides the descriptive information for our sub-
set of participants. Because the distribution of SBP values
is highly skewed, rank-normalized SBP (rSBP) values
were used in all analyses. DBP values were untrans-
formed. We adjusted for sex, age, and smoking in all our
analyses.

For the BP candidate gene study, we performed both
common and rare-variant analysis. Common variants
were defined as any variants with minor allele fre-
quency (MAF) >5% in our subset of participants, and
rare variants were variants with MAF between 0% and
5%. We performed common variant analysis as single-
marker association tests using linear mixed-effect mod-
els [6] to account for familial correlation and reported
the most significant SNP in each region. We per-
formed rare variant analysis for all rare variants within
each gene region with famBT and famSKAT [4,5],
using Wu weights, which is a beta distribution prob-
ability density function of the MAF with parameters 1
and 25 [3]. Both rare-variant approaches are described
below.

Burden tests adjusting for familial correlation (famBT)
Assuming that the sample size is 1, Y is a vector of the
trait of interest; X is an n by p matrix of covariates; « is
a vector of the covariate effects; G is an # by g matrix
of rare variants with columns Gj; w; is the weight for
variant j; and this is the combined genotype score:

q
8=y wG (1)
j=1
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The model is
Y=Xa+gB+y+e€ (2)

where f is the effect size for the combined genotype
score, ¥ is the random effect vector for familial correla-
tion, and ¢ is the normally distributed error. We assume
€ ~ N(0,021,), € ~ N(0,071,), where o2 and o} are var-
iance component parameters, and @ is twice the kinship
matrix. The model can be fitted as a linear mixed-effect
model and the genotype effect can be tested as Hy: § = 0
versus H; : B # 0 in this framework.

SKAT for family (famSKAT)
We use the same notation as above, except that f is
now a vector of length g. The model is

Y=Xa+GWB+y +¢€ (3)

where W is a diagonal matrix of weights w;, and we
assume 8 ~N (0, 7/,). The genotype effects can be tested
as Hy : 7= 0 versus H; : > 0.

For the genome-wide rare-variant analysis on real
data, we performed famBT and famSKAT, using both a
gene-based coding and splicing variants analysis (GB)
and sliding-window analysis (SW). GB was performed
for each gene, using only nonsynonymous rare variants
and rare variants at the splicing sites. SW was per-
formed for all rare variants in each genomic region of
4000 base pairs (bp) length, with 2000 bp each overlap-
ping with the previous and subsequent windows, regard-
less of the gene annotation.

Simulations

In addition to real data analysis, we also performed rare-
variant analysis on simulated data sets, with knowledge
of the underlying simulating model. To be consistent
with the real data analyses, we adjusted for sex, age, and
smoking in all analyses, even though simulated smoking
is not associated with simulated SBP or DBP. Because we
did not have missing data in the simulated data sets, we
took the first exam as the baseline and excluded indivi-
duals taking antihypertensive medication at baseline.
Therefore, the sample size varies slightly in different
simulation replicates. We used both famBT and famS-
KAT for GB and SW, but we analyzed only chromosome
3 because of limited computing resources. We evaluated
the type I errors of these approaches using quantitative
trait Q1, which was a simulated trait not associated with

Table 1 Characteristics of variables of interest at the baseline

N Sex (F) Year Age

SBP DBP Smoking

747 57.2% 1992-2005 37 (16-92)

118.7 (80-192) 70.5 (40-114) 22.2%

For continuous variables age, SBP, and DBP, means and ranges are summarized.
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any genetic variants. We also calculated the empirical
power for MAP4 on DBP and rSBP.

Results

Candidate gene analysis

We chose 8 gene regions (CASZ1, MTHFR, ULK4, PLE-
KHA?7, CSK, CSK-ULK3, PLCD3, ZNF652) that were pre-
viously reported to be associated with either SBP or DBP
[1,2]. Table 2 shows the common variant analysis and rare-
variant analysis results. We report the SNPs with the low-
est p values within each gene. However, the gene-based
approach for SKAT and burden test for all associated
regions did not reach our threshold for statistical signifi-
cance (p values >0.05/8 = 0.00625). The tests did not iden-
tify evidence of association using real data. Candidate gene
association results for common-variant analysis on 2 traits,
rank normalized SBP and DBP, are also presented in Table
2. There were 3364 common SNPs among these gene
regions. None of them was statistically significant after
adjusting for multiple testing.

Genome-wide rare-variant analysis

Table 3 summarizes the genome-wide rare-variant analysis
results on the real data. Because there are approximately
20,000 genes in the human genome, we used 2.5 x 107° as
the genome-wide significance threshold for GB. Given
that the human genome has approximately 3 billion bp,
we tested approximately 1.5 million sliding windows, each
with 4000 bp length and 2000 bp overlap. We thus used
3.3 x 107® as the genome-wide significance threshold for
SW. However, for both GB and SW, none of the genes or
sliding windows was found to be associated with the traits
at genome-wide level.

Simulations

We analyzed all 200 replicates for both GB and SW
approaches. Table 4 summarizes the empirical type I

Table 2 Candidate gene analysis results
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errors. For both methods, famBT and famSKAT have
correct type I error rates at o levels of 0.05 and 0.001.
Table 5 shows empirical power of famBT and famSKAT
for the 2 SNP selection approaches. For gene-based ana-
lysis, the sample size ranges from 742 to 783, but the
number of rare coding variants in MAP4 is 6 in all 200
replicates. For each replicate, we performed both famBT
and famSKAT on baseline untransformed DBP and
rSBP and computed empirical power as the proportion
of replicates with p values less than the corresponding
thresholds. At an a level of 2.5 x 107, both methods
have 100% power to detect association with MAP4.
However, famBT has a median p value of 1.2 x 107**
for DBP and 3.6 x 107 for SBP, whereas famSKAT has
a median p value of 9.7 x 10™** for DBP and 1.6 x 10*°
for SBP, suggesting that famBT would be more powerful
than famSKAT if a more stringent o level were used.
For sliding-window analysis, the sample size also ranges
from 742 to 783, and there are 119 windows overlapping
with the MAP4 gene. The number of rare variants in
these windows ranges from 4 to 21. Because the MAP4
gene spans a region approximately 239 kb, 60 consecu-
tive windows out of 119 fully cover the gene. For each
replicate, we performed both famBT and famSKAT for
all 119 windows, selected the smallest p value, and mul-
tiplied it by 60 for the purpose of adjusting for multiple
testing. This adjustment is conservative because the 60
consecutive windows are correlated. Thus, the power of
GB and SW may not be directly comparable. However,
it is obvious that famSKAT is much more powerful than
famBT in SW.

Discussion

MAP4 encodes microtubule-associated protein 4. This
gene is located in chromosome 3p21. The SNPs within
the gene region have previously shown a genome-wide
association with mean arterial pressure. The top-ranking

Previous GWAS results

Rare-variant analysis Common-variant analysis

SNP Chr Position Gene Gene position Trait pvalue NSNPs famBT famSKAT GWA position GWA p value
p value p value
rs880315% 1 10796866  CASZ1 10696661-10856707 SBP 2.1 x 107/ 771 0.563 0.804 10798489 0.0099
rs17367504° 1 11862778  MTHFR  11845787-11866160 SBP 2.0 x 107> 97 0.665 0.744 11860120 0.0477
rs9815354* 3 41912651 ULK4 41288090-42003660 DBP 7.8 x 107/ 3104 0233 0.344 41951111 0.0003
rs381815* 11 16902268 PLEKHA7  16809207-17035963 SBP 58 x 107/ 851 0.262 0458 16842787 0.0088
rs11024074* 11 16917219 PLEKHA7 16809207-17035963 DBP 2.8 x 107/ 851 0.995 0.776 17015044 0.0093
rs1378942° 15 75078343 CSK 75074425-75095539 DBP 1.0 x 1072 91 0.154 0174 75095157 0.1101
rs6495122% 15 75125645 CSK-ULK3 75128459-75135552 DBP 80 x 107/ 21 0.155 0712 75130093 0.0709
1s12946454° 17 43208121 PLCD3  43189008-43209891 SBP 10 x 10° 101 0.013 0.490 43202188 0.0449
1s16948048° 17 47440466 ZNF652 47366568-47439835 DBP 50 x 1077 263 0.909 0611 47411575 0.076

*SNP from CHARGE [2], with p value <5.0 x 107°

SSNP from GBPGEN [1], with p value <5.0 x 1075, Previous GWAS positions were updated to NCBI build 37.
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Table 3 Genome-wide rare-variant analysis top findings

Gene-based analysis

famBT famSKAT

Trait Gene Chr Position N SNPs p value Gene Chr Position N SNPs p value
DBP OR2L13 1 248100493-248264224 5 18x107° GLIST 1 53971906-54199877 6 11 %107
DBP TRAF1 9 123664671-123691451 2 13x 107" OR2L13 1 248100493-248264224 5 16x 107"
DBP TRIM25 17 54965270-54991409 3 42 x 107 DAZL 3 16628299-16647006 3 21 x 107"
SBP KRT14 17 39738531-39743147 4 65x107° GTF2H2 5 70330951-70363497 1 88 x 107
SBP GTF2H2 5 70330951-70363497 1 73x107° ERC2 3 55542336-56502391 5 69 x 107"
SBP ACADVL 17 7120444-7128586 8 35x 107" PCDHB4 5 140501581-140505201 7 11x10°

Sliding-window analysis

DBP CTTNBP2* 7 117615273 14 16 x10° MIR583* 5 95537956 13 38x10°
DBP ITLN2 1 160920490 18 19%10° NRCAM 7 107823273 17 71 %107
DBP MYO7A 1" 76873460 20 36 x107° INO80 15 41308350 10 11 %107
SBP LOC201617* 3 72074162 16 16x10° PRKCA 17 64294080 14 30x10°
SBP LUC7L3* 17 48832080 16 16 x10°  GUCY1A2* 11 106349460 16 19x107°
SBP PSIP1 9 15472910 15 26 x107°  MIR548H3 9 78272910 18 16 x 107

* Indicates nearest gene. For sliding-window analysis, starts of windows are shown as positions; results from windows within 1 Mb of an associated region were

removed.

Table 4 Empirical type | errors from simulation data sets

Gene-based analysis

Sliding-window analysis

o Level famBT famSKAT famBT famSKAT
0.05 0.049 0.048 0.049 0.049
0.001 0.0012 0.0011 0.0010 0.0009

Table 5 Empirical power from simulation data sets

Gene-based analysis

Sliding-window analysis

Trait Gene o Level famBT famSKAT o Level famBT famSKAT
DBP MAP4 25 % 107° 10 1.0 33x 1078 0.005 0815
SBP MAP4 25 % 107° 10 10 33%x 1078 0.005 0.945

SNP (rs319690) yields a p value of 2.69 x 107° [7]. MAP4
microtubule decoration restricts with beta-adrenergic
receptor recycling, which might explain beta-adrenergic
receptor downregulation in heart failure [8].

It is not surprising that in gene-based analysis, famBT
is slightly more powerful than famSKAT because, among
the 6 rare coding variants in MAP4-3_47894286,
3_47913455, 3_47957741, 3_47957996, 3_48040283, and
3_48040284—5 were simulated to be negatively associated
with both SBP and DBP. The last SNP, 3 47894286, has
perfect linkage disequilibrium (r = 1) with 3_47913455.
In such a simulation setting, with SNPs all having the
same direction of effect, the burden test should outper-
form most statistical approaches.

In sliding-window analysis, however, even though
MAP4 is the gene most significantly associated with

both SBP and DBP, some rare regulatory variants were
simulated to be positively associated with the traits. As a
result, famBT has almost no power to detect the asso-
ciation in this gene region. In contrast, famSKAT per-
forms very well because SKAT allows effects to be in
different directions. After adjusting for multiple testing,
famSKAT still attains good power even at low a levels.

Conclusions

The SW method is more computationally intensive than
GB because more tests are performed. However, by
using SW we can generally test all possible rare variants
associated with the trait, no matter where they are
located. In many scenarios, intergenic variants, especially
those within regulatory regions, also may be associated
with quantitative traits. Thus, for rare-variant analysis
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on real data, unless we have strong a priori knowledge
that the associated variants are nonsynonymous, we
would recommend running a sliding-window analysis.
By using famSKAT, we can perform rare-variant analysis
on family data and have much better power than simple
burden tests when there are variants with both positive
and negative effects.
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