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Abstract

In this analysis, we investigate the contributions that linkage-based methods, such as identical-by-descent mapping,
can make to association mapping to identify rare variants in next-generation sequencing data. First, we identify
regions in which cases share more segments identical-by-descent around a putative causal variant than do
controls. Second, we use a two-stage mixed-effect model approach to summarize the single-nucleotide
polymorphism data within each region and include them as covariates in the model for the phenotype. We assess
the impact of linkage disequilibrium in determining identical-by-descent states between individuals by using
markers with and without linkage disequilibrium for the first part and the impact of imputation in testing for
association by using imputed genome-wide association studies or raw sequence markers for the second part. We
apply the method to next-generation sequencing longitudinal family data from Genetic Association Workshop 18
and identify a significant region at chromosome 3: 40249244-41025167 (p-value = 2.3 x 1077).

Background

In genetic association studies, joint analysis of multiple
single-nucleotide polymorphisms (SNPs) can be more
powerful than separate SNP analysis because single mar-
kers typically either have small effect sizes (common var-
iants) or minor allele frequencies that are too small to
reliably fit models (rare variants) [1]. If the rare variant
effects were large, they would have been found through
previous family-based linkage studies if the disease was
not heterogeneous. There may be a middle ground in
which multiple rare variants of moderate effect size play
a key role in the etiology of some diseases. Such situa-
tions might be ideal for identity-by-descent (IBD) map-
ping [2]. Moreover, with the availability of genome-wide
SNP data, the density of SNP markers has increased dra-
matically, making it possible to detect segments of IBD
as small as 2 centimorgans (cM) [3].
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In this article, we investigate the contribution that link-
age-based methods, such as IBD mapping, can make to
association mapping to identify rare variants in next-
generation sequencing data. In the first part of our analy-
sis, we use the methods of Browning and Thompson [2]
to identify regions in which cases share more segments
of IBD around a putative causal variant than do controls.
After selecting these regions, we use a two-stage mixed-
effects model approach, which was recently proposed by
Tsonaka et al [4], to summarize the SNP data within
each region and include them as covariates in the model
for the phenotype. To increase our power to identify rare
variants, we also include the number of rare variants per
region as a covariate in the model.

To assess the impact of linkage disequilibrium (LD) on
our analysis, we present results from estimating IBD prob-
abilities using markers with and without LD. We assess the
impact of imputation by analyzing both imputed dosage
genome-wide association studies (DOS) and whole genome
sequence (WGS) data. Table 1 provides a description of
the data sets used for IBD and association mapping.
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Table 1 Description of genotypic data sets used in each part of the analysis
Analysis IBD mapping: regions with excess of Association mapping: Two-stage approach
IBD sharing

Name AllMark NoLD DOS WGS

Type of data GWAS Imputed (dosage) WGS based on existing GWAS framework Whole genome sequence
(65,000, lllumina chips)
No. markers ~ 50,000 784 ~1.2 million ~1.7 million

No. individuals 939 939 464
Methods estimation, we present results for both AllMark and NoLD

Study sample

We consider data from 939 individuals from 20 families;
464 are directly sequenced individuals and imputed WGS
data, based on existing genome-wide association studies
(GWAS) data, are available for their family members. We
restrict our work to real genotypic data from chromo-
some 3. For each individual, we have information on age
at examination and current tobacco smoking for up to 4
time points. We use the binary trait hypertension diagno-
sis at the first time point for selection of regions with
excess IBD sharing and the quantitative trait diastolic
blood pressure (DBP) for the phenotype model.

Selection of regions with excess IBD sharing

We construct all possible case-case (CaCa) and case-
control (CaCo) pairs, such that individuals within pairs
are unrelated. This results in 9229 CaCa pairs and 10080
CaCo pairs. We estimate the IBD state using 2 data sets:
one containing approximately 50,000 GWAS markers,
which we refer to as the AllMark data set, and 1 contain-
ing only 784 LD-pruned GWAS markers, the NoLD data
set. From both data sets we eliminate SNPs with minor
allele frequencies (MAFs) <5% because shared alleles that
are assumed to be rare represent strong evidence for IBD
and can distort results if this assumption is violated [5].
In brief, the NoLD markers are selected using a sliding
window 1 cM in size, removing markers based on linkage
information content and excluding markers with the low-
est MAF. At each marker we calculate the rate of IBD for
each of the 2 groups and subtract their genomic average
over all markers and pairs. If the ratio between CaCa
pairs is larger than the maximum CaCo ratio, exceeding
a certain threshold, we consider this region for associa-
tion analysis.

To compute the IBD states between pairs of individuals,
we use Thompson’s method [6] with ibd_haplo (MOR-
GAN) [6,7]. This method uses a continuous-time Markov
rate matrix to model and estimate IBD states among pairs
of individuals, using data at dense SNP loci, ignoring the
LD structure. However, LD remains a major confounding
factor because LD is itself a reflection of coancestry at the
population level. To assess the impact of LD on IBD

data sets.

In ibd_haplo, one needs to specify a value for para-
meters of the latent IBD process 3, the pointwise pair-
wise probability of IBD, and o, the overall rate of
change of IBD state along a chromosome. The choice of
these parameters defines the time-depth of the IBD that
is sought [5]. For the results shown in this paper, o =
0.05 and B = 0.01. We use a calling threshold of 0.9 as
the probability that each of the IBD states must reach
for the state to be called.

Two-stage approach

After the regions have been selected, we use the two-
stage approach of Tsonaka et al to test for their associa-
tion with the longitudinal phenotype [4]. In the first
stage, a random-effects model is used to summarize the
regions via their empirical Bayes (EB) estimates. Next,
the EB estimates of a specific region r, obtained from
the first stage, are added as covariates into the model
for the phenotype to test for region effects. Below, we
describe in brief the phenotypic model used in the sec-
ond stage.

Let DBP;;; be the diastolic blood pressure for indivi-
dual j from family i at time point ¢, where i = 1,..., N,
j=1,...,n,t=1,...,4, and n; is the number of
individuals in family i. We use the following linear
mixed model for each region r:

DBPjj, = Bo + Bixiji + Baebijr + BsSijr + Ujj + €ij; (1)

where x;;; is the vector with covariate values for age
and smoking status, eb;;, is the EB estimates of the
region r, obtained from the first stage, and s;;, is the
number of rare variants within region r; u;; is the ran-
dom family effect and w; = (ui1, .. ., Uin,) follows a multi-
variate normal distribution with mean 0 and variance-
covariance matrix auzi X R, where R is the coefficient of
relationships matrix; eij¢ is a normally distributed resi-
dual with a 4 x 4 covariance matrix to model the corre-
lation among 6 repeated measurements. We use a
multivariate Wald statistic with 2 degrees of freedom to
test the null hypothesis of no region effect; that is, HO:

B2 =pB3=0.
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Results

Table 2 presents the mean proportions and lengths of
IBD segments shared for both groups. Averages were
taken over all markers and all pairs. For both AllMark
and NoLD, we observed a small difference in both mean
proportion and length. However, in AllMark, where LD
is ignored, the mean proportion of IBD is increased, as
compared to NoLD. We compared the rates between
the 2 groups and found 8 and 7 regions with an excess
of IBD between CaCa pairs for AllMark and NoLD,
respectively. Table 3 lists the starting and ending physi-
cal positions of these regions, as well as the number of
SNPs and rare variants they contain. Interestingly, we
observed no overlap between regions when using mar-
kers with and without LD.

After selecting the regions, we tested their association
with the longitudinal phenotype by fitting a linear mixed
model to DBP with the EB estimates per region, smok-
ing status, and age as covariates. To further increase our
power, we considered a second model, where we
adjusted also for the sum of rare variants. We used 2
different genotype data, DOS with imputed genotypes
on 939 individuals and WGS with complete genomics
on 464 individuals. To account for multiple testing, we
used a Bonferroni correction, using a significance level
of alpha divided by the maximum number of indepen-
dent regions tested for each data set; that is, 7 for the
NoLD and 8 for the AllMark. We used 6 x 107> as the
significance level for AllMark and 7 x 10~> for NoLD.
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No significant results were found when the candidate
regions were selected using the AllMark data (results
not shown). Table 4 gives the results of the analysis
based on NoLD. When NoLD and DOS were used,
there was a significant result for the region 3:40249244-
41025167 (p-value of the 2df Wald 2.3 x 107%). When
WGS was used instead of DOS, the variance of the esti-
mates increased and the signal was no longer significant.
When the number of rare variants was removed from
the model, the region again reached significance (p-
value = 2.1 x 107%).

Discussion
We have presented a method that combines linkage and
association-based mapping to identify rare variants in
next-generation sequencing data. Initially, we identify
regions with an excess of IBD between case-case as
compared to case-control pairs. Subsequently, we use a
two-stage approach to summarize the regions via an EB
estimate of the genetic variation and test for region
effects. The two-stage approach captures the correlation
between SNPs within regions by using random effects.
These types of approaches can be more powerful than
methods that ignore the dependency structure between
the SNPs [8]. The approach can be directly applied to
family and longitudinal data and can deal with missing
genotypes.

One main advantage of this method, as compared to
an association-only approach [9], is that by using the

Table 2 Description of IBD between case-case and case-control pairs

Mean proportions

Mean length of segments

Data Pairs Any IBD Not IBD No call Any IBD Not IBD No call
AllMark CaCa 0295 0499 0.206 5827 144.48 2598
CaCo 0.292 0.503 0.205 5801 145.58 2591
NoLD CaCa 0.006 0950 0.044 4481 316.00 2127
CaCo 0.004 0.951 0.045 39.52 315.09 21.59
Table 3 Descriptions of regions
AllMark NolLD
Physical position DOS WGS Physical position DOS WGS

Start-end N n N n

Start-end N n N n

27279401-27292557 77 38 100 61

52618319-52637439 105 46 168 m
52759860-52771468 77 44 17 82
52830547-52866115 291 156 379 244
86269515-86282586 60 24 96 58
99537305-99580268 211 120 322 260
99621002-99676384 270 144 386 299
99927237-100004117 396 185 575 427

29239664-29531222 2153 919 2984 1659
34834899-35282759 2730 1284 4267 2715
35718847-36018767 1618 927 2446 1755
36815704-37526013 3738 2151 5669 4038
40249244-41025167 4247 2530 6168 4214
167635899-168125439 2665 1349 3926 2552
168621773-168859006 1508 708 2018 1207

N, number of SNPs per region; n, number of rare variants (MAF <5%) per region
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Table 4 P-value for testing region effects using the NoLD data set

DOS WGS
p2° B3 B2, p3° p2° p2° B3 B2, B3° p2°
003 0.25 0.04 0.02 0.04 0.76 0.12 0.04
093 091 099 092 081 027 0.54 093
099 0.11 027 077 035 041 050 051
0.18 024 025 0.20 032 0.13 0.15 023
13x10° 0.05 23x107° 36 x107° 93x 107 033 001 21 %107
0.29 1.00 055 0.22 027 0.75 0.54 028
0.09 066 022 0.09 025 0.26 031 033

Two different models are fitted: one with and one without including the number of rare variants as covariates. The regions are in the same order as in Table 3.

?Based on fitting DBPi]‘[ =fo + ﬁlxi,-t + ﬁzebﬁr + ﬁ35i}'r + Ui + ejjt.
b Based on fitting DBPijt =fBo + ,leijt + ﬁzebi]‘r + Ui + €jjr.

IBD mapping in the first step, we reduce the number of
candidate regions to areas more enriched for putative
causal loci. This considerably reduces the number of
tests that need to be performed, and testing for interac-
tions becomes feasible. This method can also be used
for non-gene regions, although cautiously, because pos-
sibly important regions might already have been
excluded in the first part, if the parameters for the IBD
are misspecified. Moreover, if the resulting regions con-
tain too many markers, the effect of rare variants might
be diluted. The regions are selected using the binary
hypertension diagnosis phenotype at the first measure-
ment and not the quantitative DBP phenotype analyzed
in the association study. This may be a problem if the 2
phenotypes are different. In our case, the binary pheno-
type was created using a threshold for the quantitative
phenotype or information on medications. If the effect
of a variant changes over time, we might lose power by
determining the IBD states only on the first measure-
ment. For individuals receiving treatment, the recorded
DBP could be considered as a right-censored value,
because we know that it is less than what the untreated
value would be. Our approach ignores this information,
which again may result in power loss. One way to
address this issue could be to use a nonparametric algo-
rithm to adjust blood pressure for treatment effect [10].

In this article, we do not present results for type I
error or power. However, Tsonaka et al. [4] and Houw-
ing-Duistermaat et al. [9] report results for both regard-
ing the two-stage approach. Using extensive simulations,
Tsonaka et al. showed that the test statistics preserve
the type I error at nominal level for scenarios compar-
able to ours. Houwing- Duistermaat et al. analyzed the
simulated phenotypes from this Genetic Analysis Work-
shop (GAW) and found that the power was as high as
96.5% and 72.5% using the imputed GWAS and WGS
data, respectively.

We found significant results only when the candidate
regions were selected using the NoLD and DOS data.

One reason for the better performance of the NoLD
data, as compared to the AllMark data, could be the
presence of LD in the latter. LD leads to increased rates
of false positive IBD results [5], which could erroneously
indicate these regions as interesting. The absence of
overlap between regions when using these 2 data sets
also indicates the sensitivity of the method to the
amount of LD in the data. Another reason for the better
performance of the NoLD data set could be the region
selection process. In the NoLD data, the markers are
further apart from each other, as compared to the All-
Mark data set. Hence, when selecting a region (at least
2 markers), we automatically include more SNPs and
rare variants.

When the NoLD and WGS data were used, the signal
of the region found using DOS was no longer signifi-
cant. This power loss could be a result of the smaller
sample size in the WGS data, which leads to increased
variances of the parameter estimates (results not
shown). The same happens for the estimates of the
genetic variance. On one hand, using the DOS data we
estimate o2 = 10.622 with a variance of 1.4366 (p-value
6.9 x 10™'"). On the other hand, when using WGS, the
estimate becomes much smaller, 57 = 1.153, and its var-
iance increases to 27.23 (p-value = 0.99). Removing the
number of rare variants from the model led to a signifi-
cant p-value for this region.

Using the NCBI database [11], we found that the gene
CADM2, which is 146 kilobase (kb) on the right of the
region we identified, is associated, among other pheno-
types, with blood pressure and body mass index [12].
More specifically, 3 SNPs in this gene are associated
with blood pressure: rs1370032 (p-value = 7.22 x 107°),
1513074417 (p-value = 7.625 x 107°), and rs4859048 (p-
value = 7.872 x 107°).

Conclusions
We identified a significant region when IBD states were
determined using LD-pruned markers and association
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with phenotype was tested using the imputed genotypes
of 939 individuals. When the raw sequence data of 464
individuals was used, the signal was significant only
after the number of rare variants from the phenotype
model were removed.
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