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Abstract

Because the genotype-phenotype correlation information is investigated differently by linkage and association
analyses, various efforts have been made to model linkage and association jointly. However, joint modeling
methods are usually computationally intensive; hence they cannot currently accommodate large pedigrees with
dense markers. This article proposes a simple method to combine the linkage and association evidence with the
aim of improving the detection power of disease susceptibility genes. Our detection power comparisons show that
the combined linkage-association p values can improve remarkably the causal gene detection power in Genetic
Analysis Workshop 18 simulation data.

Background
Linkage analysis in family data looks for the genomic
region where the disease phenotype of interest and a
stretch of genetic markers are cosegregated. As a result
of the strong identity-by-descent (IBD) sharing among
family members and a limited number of recombination
events present in collected pedigrees, the critical regions
detected by linkage analyses rarely pinpoint a single
gene. However, linkage analysis is immune to the con-
founding of population stratification suffered by associa-
tion analyses. Association analyses regress quantitative
phenotypes on a marker’s genotypes or compare allele
frequencies of a single-nucleotide polymorphism (SNP)
between cases and controls, and can narrow down the
putative disease regions to small regions of high linkage
disequilibrium (LD blocks), which are usually much
shorter than linked regions. With the advance of next-
generation sequencing technology and highly accurate
imputation methods, association analyses with dense
marker coverage can even potentially locate candidate
causal variants (and thus candidate genes) directly.
Because the genotype-phenotype correlation information

is investigated differently by linkage and family-based
association analyses, various efforts have been made to
model linkage and association jointly [1-9]. Naming a
few among many, Li et al [6] proposed 2 likelihood ratio
tests in a joint linkage-association model to characterize
whether an associated SNP can partially or completely
explain linkage signals; Goring and Terwilliger [4] pro-
posed a joint linkage and LD model through the use of
a pseudomarker locus. Joint modeling methods [1,3-6]
are usually computationally intensive; hence they cannot
currently accommodate large pedigrees with dense mar-
kers. This article proposes a simple method to combine
the linkage and association evidence with the aim of
improving the detection power of disease susceptibility
genes. Specifically, we convert the linkage LOD score to
p values and adopt the unweighted Liptak [10] method
to combine the linkage and association p values. Our
detection power comparisons show that the combined
linkage-association p values can improve the causal gene
detection power remarkably in Genetic Analysis Work-
shop 18 (GAW18) simulation data.
All the analyses and comparisons in this report are

performed with the disease causal variants known.
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Methods
Long-term mean blood pressure
We adopt the method found in Levy et al [11] to adjust
for the effects of age, sex, and medication status on the
blood pressure, and calculate the long-term mean systo-
lic blood pressure (SBP) on the basis of the 3 time-
point-adjusted SBP measurements.

Multipoint quantitative trait linkage analysis (SOLAR)
SOLAR [12] is a variance component multipoint linkage
analysis software for quantitative traits. In the restricted
model, the additive genetic variance because of the
quantitative trait locus (QTL) of interest equals zero,
whereas in the alternative model the additive genetic
variance because of the QTL of interest is estimated by
maximizing the likelihood of the model. The linkage
LOD score is the difference log10 in likelihood between
the alternative and the restricted models. A total of
3071 genome-wide association studies (GWAS) array
SNPs were randomly selected so that they were not in
high LD in unrelated individuals. Multipoint linkage
analysis in SOLAR [12] was applied to the LD-pruned
SNPs on the quantitative traits Q1 and mean SBP.

Family-based association test using multiple markers
The multimarker version of family-based association test
(FBAT) statistics is a linear combination of single-marker
FBAT statistics with the data-driven combination weights
[13]. We adopt the option -e in the FBAT package, which
forces it to estimate the association signal in the presence
of linkage. The analysis unit is a gene whose starting and
ending physical positions are obtained from the UCSC
refgene database. The imputed genotypes of all the non-
synonymous SNPs in a gene were analyzed together to
obtain gene-based association p values.

Combining linkage and association evidence
In the output from SOLAR, LOD scores were given with
respect to genetic distances; the physical boundaries for
each gene were mapped to genetic distances, and a gene
was assigned the average LOD score of the genetic
region to which it is mapped. Next, the linkage LOD
score is converted to a p value by observing that 2*loge
(10LOD) is asymptotically distributed as a 0.5:0.5 mixture
of a χ2

1 variable and a point mass at zero [12]. The link-
age and association p values for a gene are inverse-nor-
mal transformed to Z1 and Z2 respectively. We then
adopt the following unweighted Liptak method [10] to
combine linkage and association evidence and obtain a
combined p value. When Z1 and Z2 are independent,

Zc = lTk (Z1,Z2)T/
√
lTk�lk where lk is a k-element vector

of 1, F is a 2 × 2 identity matrix, and (Z1 ,Z2 ) is a row
vector made up of Z1 and Z2 that follows the standard

normal distribution asymptotically. When Z1 and Z2 are
correlated [14], F can be empirically estimated as the

correlation matrix of the matrix P = (Zb
1,Z

b
2), where Zb

j

( j = 1,2) is an N-element column vector of test statistics
for test j when the phenotypes are permuted N times.
The combined linkage and association p values were cal-
culated using Liptak method with and without correla-
tion correction.

Results
The linkage analysis showed that chromosome 3 had an
LOD score >1.5 three and nine times among simulations
1 to 10 for the traits of Q1 and mean SBP, respectively.
Most of the linkage regions for the trait of mean SBP
were mapped around 55 to 70 cM, whereas for the trait
of Q1, the linkage regions were quite scattered, being0
to 30 cM, 125 cM, and 165 to 220 cM for the 3 simula-
tions with LOD scores >1.5. It turned out that chromo-
some 3 had the strongest linkage signal.
FBAT was applied to 8047 genes among 11 chromo-

somes that have more than 1 nonsynonymous SNP. We
mimicked the fast validation strategy in practice, which
took top 50 candidates to validate in independent sam-
ples. Because we investigated gene-based analyses, we
took a p value threshold so that top 50 genes were
checked against the simulated disease model. For mean
SBP, on average, 49 of 8047 genes had combined p
values less than 0.001 among simulations 1 to 10. Only
2 causal genes, MAP4 and FLNB on chromosome 3,
were ever among the top 49, so we investigated their
detection power. For Q1, on average, there were 9.5 and
9.1 genes out of 8047 with FBAT p values and com-
bined p values smaller than 0.001, corresponding to an
empirical false-positive rate of 0.0012 and 0.0011,
respectively.
Although the combined p values were slightly different

when the correlation between linkage and association p
values was corrected, the ranks of these 2 genes (out of
8047) based on the combined p values did not change.
Table 1 shows the ranks of the 2 causal genes based on
the association p values and the combined p values for
the traits Q1 and mean SBP.
For the trait of mean SBP, the combined p values were

viewed to improve the FBAT p values if the rank of the
causal gene based on the latter was beyond 49, and the
rank based on the former was within 49. There were 5
and 4 improvements for MAP4 and FLNB, respectively
(highlighted in Table 1). On the contrary, there was no
such improvement for the trait Q1.

Discussion
Generally speaking, the power for detecting the causal
genes was low, except for MAP4, which explains a large
percentage of SBP variance (7.79%). Combined p values
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improved the detection power for MAP4 from 50% to
100%. For FLNB that explains a much lower percentage of
SBP variance (0.29%); FBAT had no detection power.
Combined p values improved the power to 40%. More-
over, the type I error was well controlled in our combined
p values. These results indicated a promising strategy of
combining the linkage and association evidence to
improve the true discovery rate/power. Furthermore, our
method combines the linkage and association p values in a
simple way; thus it is applicable to large pedigrees as long
as large pedigrees can be accommodated in the linkage
analyses. The option -e in FBAT software forces an esti-
mation of association in the presence of linkage, thus the
association signal detected is expected to be independent
of the linkage signal. That the combined p values with and
without correlation correction were very similar (correla-
tion coefficient >0.99, data not shown) verified this.
The combined p values we propose to calculate depend

on the strength of both linkage and association signals.
Moderate signals in both linkage and association will
generate a more significant combined p value than a sig-
nificant signal in one test but a null signal in the other.
To maximize the association power, we analyzed only
nonsynonymous SNPs in gene-based association tests, as
we know that the nonsynonymous SNPs are enriched
with causal variants with relatively large effects from the
released disease model. In real sequencing projects, espe-
cially whole genome sequencing studies, we may select
other functional variants to analyze, such as deleterious
or regulatory SNPs, to improve the association power.
In our opinion, the combined test is more powerful

because linkage and association analyses investigate differ-
ent parts of phenotype-genotype correlation, thus provid-
ing nonredundant information. Combining these 2
p values makes some causal genes that have moderate sup-
ports in both tests stand out. For example, for simulation
8, chromosome 3 had a LOD score of <1.5. However, the
regions to which MAP4 and FLNB were mapped still have

moderate linkage evidence, with LOD scores of 0.82 and
0.53, respectively. As a result, the ranks improved from
154 (FBAT p value = 0.0137) to 6 (combined p value =
0.00166) for MAP4, and from 2372 (FBAT p value =
0.195) to 343 (combined p value = 0.0430) for FLNB.

Conclusions
We proposed a simple method to combine the linkage and
family-based association evidence that is applicable to large
pedigrees. Our results showed that the combined linkage
and FBAT p values do improve the causal gene detection
power remarkably. The improved true discovery will ren-
der a higher chance for the top genes to be validated.
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