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Abstract

Rare variants may, in part, explain some of the hereditability missing in current genome-wide association studies.
Many gene-based rare-variant analysis approaches proposed in recent years are aimed at population-based
samples, although analysis strategies for family-based samples are clearly warranted since the family-based design
has the potential to enhance our ability to enrich for rare causal variants. We have recently developed the
generalized least squares, sequence kernel association test, or GLS-SKAT, approach for the rare-variant analyses in
family samples, in which the kinship matrix that was computed from the high dimension genetic data was used to
decorrelate the family structure. We then applied the SKAT-O approach for gene-/region-based inference in the
decorrelated data. In this study, we applied this GLS-SKAT method to the systolic blood pressure data in the
simulated family sample distributed by the Genetic Analysis Workshop 18. We compared the GLS-SKAT approach
to the rare-variant analysis approach implemented in family-based association test-v1 and demonstrated that the
GLS-SKAT approach provides superior power and good control of type | error rate.

Background

Rare variants may, in part, explain some of the missing
heritability in current genome-wide association studies
[1]. Many rare-variant analysis approaches have been
proposed in recent years [2-9]; however most are aimed
at population-based case-control samples. Because most
of the rare variants arise from recent mutations in pedi-
grees [10], the family-based design has the potential to
enhance our ability to enrich for rare risk or protective
variants that occur in the pedigrees over several genera-
tions and can substantially increase power. We recently
developed an analysis strategy based on generalized least
squares (GLS) [11] for family-based rare-variant associa-
tion analysis, in which we first use the kinship matrix to
decorrelate the family-based data, then apply a SKAT-O
[9] approach to the decorrelated data, which we term
the GLS-SKAT approach (Li D, personal communica-
tions, 2013). In this study, we applied the GLS-SKAT
method to analyze the simulated systolic blood pressure
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(SBP) data in the family sample provided by the Genetic
Analysis Workshop 18 (GAW18) to examine its
performance.

Methods
Residual calculation for SBP in GAW18 simulated data
Independent individuals in the GAW18 data were
extracted based on the list of unrelated individuals pro-
vided by the GAW18 organizers. For each simulation, a
linear regression model was built based on the indepen-
dent individuals using covariates including gender, age,
age square, antihypertension medicine usage, and smok-
ing. The linear regression model built from the unrelated
subjects was then projected to the correlated subjects and
the residuals were calculated for all individuals in GAW18.
Because the GLS-SKAT approach (Li D, personal com-
munications, 2013) can implicitly control for population
substructure, neither ethnicity nor principal components
were included as covariates in the residual calculation.

Kinship matrix calculation
The software EMMAX [12] was used for kinship matrix
calculation. To ensure that the kinship matrix was
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nonsingular, one individual in each identical twin pair was
excluded. Variants with minor allele frequencies (MAFs)
less than 0.01 were also excluded in the kinship matrix
calculation.

GLS transformation

GLS transformation was performed using R code devel-
oped in-house. The GLS transformation has been
described in detail elsewhere (manuscript in prepara-
tion). Briefly, a transformation matrix was calculated as
the inverse of the decomposition of the kinship matrix.
Then, this transformation matrix was used to decorre-
late the family data by multiplying it with both the phe-
notype and genotypes matrices. The residual of SBP
after controlling for the covariates was used as the phe-
notype. Given the time limitation, only simulated chro-
mosome 3 genotype data was used as recommended by
the GAW organizer. All variants, both common and
rare, were transformed in this step.

Analysis of the decorrelated data

For gene-based inference, the SKAT-O approach [9] was
applied to the decorrelated data. Here, a gene region was
defined as 20 kilobases (kb) up and downstream of the
gene transcript start and stop sites, respectively. Both
rare and common variants were included in this analysis,
and the single-nucleotide polymorphisms (SNPs) were
weighted inversely to their MAF based on the weighting
framework previously proposed by Bowling and Bowling
[4]. Again, no population stratification measures nor eth-
nicity information was included.

This GLS-SKAT procedure was applied to replicates 1
to 100 in the GAW18 simulated data. Power and type I
error rate were calculated based on the 100 simulated
data sets. To achieve a family-wise error rate of 0.05 after
applying the Bonferroni correction, an alpha level of
4.0E-5 was utilized in the power calculation to account
for the 1247 gene regions on chromosome 3.

Family-based association test for rare variants

As a comparison we analyzed the same 100 data sets
using the family-based association test (FBAT) test for
rare variants (described in the updated FBAT version
2.04). There are 2 versions of the FBAT test for rare var-
iants: FBAT-v0, which weights all the variants equally,
and FBAT-v1, which weights the variants inversely to
their MAF. Here we used the FBAT-v1 in the analysis.
For consistency, both rare and common variants also
were analyzed via the FBAT-v1 test.

We were blind to the GAW18 answer sheet when we
carried out the analyses. We compared the results to
the answer sheet and carried out power calculations
only after the GAW18 meeting.
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Results

Detailed description of the GAW data can be found in
the work of Almasy et al [13]. In the GLS-SKAT analy-
sis, 2 individuals who were identical twins of others
were excluded in the kinship matrix calculation, leaving
847 individuals with both phenotype and genotype data
in the analysis. In the FBAT-v1 analysis, 369 trios from
the GAW18 data were used because the FBAT test can
only use trios.

Figure 1 shows the QQ plots of SBP analysis results in
the first simulation (chromosome 3 only) for both GLS-
SKAT and FBAT-vl methods. The lambda of the QQ
plot is 1.057 for GLS-SKAT and 0.967 for FBAT.

To calculate the type I error rate, we pooled the statis-
tics across all of the 100 simulated data sets after
excluding genes located within 1 megabit (Mb) to any of
the causal SNPs on chromosome 3. The type I error rate
was calculated for both the GLS-SKAT and FBAT-vl
analyses (Table 1). Both approaches have type I error
rates close to the nominal alpha level.

We also calculated power using the 100 simulation
data sets for both the GLS-SKAT and FBAT-V1 meth-
ods for the MAP4 gene region, which was simulated to
contribute to SBP variations (Table 2). We observed a
clear advantage to the GLS-SKAT approach, which had
a power of 0.69 in comparison to 0.43 for FBAT-v1 at
an alpha significance level of 0.001, and 0.34 in compari-
son to 0.08 with a more stringent significance level of
4.0E-5, with the correction for the number of genes
tested.

Discussion

We applied the GLS-SKAT approach in the simulated
GAW18 data set. This approach is based on a GLS fra-
mework developed for family-based samples, in which
the kinship matrix is first computed using the high-
dimensional genetics data, and then the kinship matrix
is used to decorrelate the family data. Building upon the
belief that the property of this framework would lead to
a data projection that would yield a best unbiased linear
estimate for each single variant in the genome (paper in
preparation), we have followed the SKAT-O approach
[9] for gene-/region-based inference to capture the
potential causal rare variants.

Application of the GLS-SKAT approach to GAW18
simulated family data showed that the GLS-SKAT
approach does not have inflated type I error rates with
complex family structures, indicating that the GLS-
based framework can properly decorrelate family data.
Moreover, in all analyses when using GLS-SKAT, this
was observed without incorporating any covariates
related to ethnicity or population substructure, indicat-
ing that, by accounting for the pairwise relatedness, the
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Figure 1 QQ plot when applied to the first simulation of the GAW18 SBP data. Analysis was performed using the simulated SBP data in
GAW18 after controlling for gender, age, age?, antihypertension medicine usage, and smoking. Only chromosome 3 data were used in this
analysis. The figures show the QQ plots for GLS-SKAT and FBAT-v1 analyses in the first simulation. (A) QQ plot for the GLS-SKAT analysis. (B) QQ
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kinship matrix can be used to control for both major
scale population structure (ie, ethnicity) and the much
finer scale substructures (ie, family structure). This is
consistent with what has been observed in previous
investigations [12,14].

By incorporating all family members in the analysis, the
GLS-SKAT approach makes full use of all phenotype and
genotype data. This is an advantage compared to the
FBAT-based test, in which only trios were included.
Moreover, because the FBAT-based analysis is based on
transmission disequilibrium, the phenotypes of parents
do not contribute to the test statistics. This leads to addi-
tional loss of information and consequently lower power,
as observed in this study.

Another advantage of the GLS-SKAT approach is that
it does not rely on the known family structure because
the kinship matrix is estimated using the high dimen-
sional genetics data, making it robust to the potential

Table 1 Type | error rate of the GLS-SKAT and FBAT-v1
analysis

Alpha level
0.05 0.01 0.001
GLS-SKAT 0053 984 x 107 107 x 10°
FBAT-v1 0.051 105 x 1072 102 x 107

All the genes within 1 Mb of the simulated locus (MAP4) were excluded in
this analysis; type | error rate was calculated with test statistics for all 100
simulations.

errors of unidentified cryptic family structure. This is
particularly important for samples with complex large
pedigrees, in which the cleaning and correction of the
self-reported family structure using genetic data are
cumbersome.

The GLS approach is similar in spirit to the previously
proposed EMMAX and GRAMMAR approach [12,14], as
well as the recently proposed GRAMMAR-GAMMA
approach [15], because all those methods use the kinship
matrix or covariance matrix to remove the influence of
family structure. In particular, the GRAMMAR-GAMMA
approach by Svishcheva et al [15] proposed to transform
the phenotype vector using the covariance matrix to speed
up the score-based association test. Our GLS approach is
based on a very similar idea except that we propose to
transform both phenotype and genotype, which allows us
to completely ignore the covariance matrix when calculat-
ing the test statistics. This should lead to additional

Table 2 Power of the GLS-SKAT and FBAT-v1 analysis for
the MAP4 gene region

Alpha level
0.05 0.01 0.001 40x107°
GLS-SKAT 1 092 0.69 034
FBAT-v1 098 083 043 0.08

Power was calculated with test statistics of the MAP4 gene region for all the
100 simulations.
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computational efficiency and potentially fewer restrictions
in practice.

In the application of the GLS approach to GAW18
data, the transformation was performed using the kinship
matrix after controlling for all covariates that contribute
to SBP in the simulation model. However, in practice
there could be residual correlation as a result of the
structure of unknown covariates within the family, as one
reviewer pointed out. This potential problem can be
solved by using a covariance matrix instead of the projec-
tion matrix in the GLS transformation, in which the cov-
ariance matrix is a weighted average of the kinship
matrix and an identical matrix with the weight being the
calculated hereditability. This is similar to the approach
used in GRAMMAR-GAMMA [15].

Conclusions

In summary, we applied the GLS-SKAT approach to
GAW18 simulated SBP data. The results demonstrated
that the GLS-SKAT approach can properly control for
both population and family structure using the kinship
matrix estimated from high dimensional genetics data.
By using all the available phenotype and genotype infor-
mation, we demonstrated that the GLS-SKAT approach
has a clear advantage in terms of power compared to
the FBAT-based test.
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