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Abstract

We apply a family-based extension of the sequence kernel association test (SKAT) to 93 trios extracted from the 20
pedigrees in the Genetic Analysis Workshop 18 simulated data. Each extracted trio includes a unique set of parents
to ensure conditionally independent trios are sampled. We compare the empirical type I error and power between
the family-based SKAT and the burden test under varying percentages of causal single-nucleotide polymorphisms
included in the analysis. Our investigation using simulated data suggests that, under the setting used for Genetic
Analysis Workshop 18 data, both the family-based SKAT and the burden test have limited power, and that there is
no substantial impact of percentage of signal on the power of either test. The low power is partially a result of the
small sample size. However, we find that both the family-based SKAT and the burden test are more powerful when
we use only rare variants, rather than common variants, to test the association.

Background
Genome-wide association studies (GWAS) have proven
to be a powerful approach to identify novel common sin-
gle-nucleotide polymorphisms (SNPs) contributing to the
etiology of complex traits [1]. However, identifying rare
genetic variants with minor allele frequency (MAF) <5%
that are associated with complex diseases remains chal-
lenging. Standard statistical tests for common variants
(MAF >5%) are underpowered for rare variants because
of their low frequencies and moderate effect sizes. Even
with appropriate methods, larger sample sizes are
required to have variation in the rare variants [2,3].
A major limitation of population-based association

analyses is the potential for unrecognized population het-
erogeneity as a result of population stratification. This
problem, however, can be well addressed through the use
of family-based studies, which use related individuals in
association studies. Family-based controls eliminate the
need to adjust for population structure [4,5]. Another

advantage of using family-based controls is the ability to
identify and correct technological artifacts in the data,
investigations of questions such as parent-of-origin
effects and other applications that are imperfectly or not
readily addressed in case-control association studies [4,5].
The data set for the Genetic Analysis Workshop 18

(GAW18) consists of whole genome sequence data from
a pedigree-based sample. These pedigrees are drawn
from the Type 2 Diabetes Genetic Exploration by Next-
generation sequencing in Ethnic Sample Project 2
(T2D-GENES Project 2). The T2D-GENES Project 2 is
designed to identify low-frequency or rare variants influ-
encing susceptibility to type 2 diabetes using information
from whole genome sequencing of 1043 individuals from
20 Mexican American pedigrees enriched for type 2 dia-
betes from San Antonio, Texas. The pedigree data are
drawn from 2 San Antonio-based family studies: the San
Antonio Family Heart Study (SAFHS) and the San Anto-
nio Family Diabetes/Gallbladder study (SAFDGS).
A variance component test, known as a sequence kernel

association test (SKAT), is proposed for testing associa-
tions of rare variants in population-based designs [2,6].
SKAT is shown to be powerful when rare variants have
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effects in different directions, and it is computationally
efficient because of the simple limiting distribution of the
test statistic. However, SKAT is designed for testing asso-
ciations in unrelated subjects and cannot be directly
applied to family-based designs. Some investigators have
proposed an extension of SKAT to family-based designs
[7], hereafter referred to as family-based SKAT. In this
report, we apply it to the GAW18 simulated data and
explore more features of the test statistics.

Methods
The data set for GAW18 includes 959 individuals out of
1043 individuals from 20 Mexican American pedigrees of
the T2D-GENES Project 2. We conducted our analysis
using the simulated phenotypes, baseline systolic blood
pressure (SBP) and diastolic blood pressure (DBP), and
the whole genome sequenced and imputed genotypes of
the 959 correlated individuals. To keep the notation sim-
ple and make our discussion transparent, we considered
trio designs, acknowledging the fact that the method is
applicable to more general family structures.

Trio selection
Conditionally independent trios were extracted from the
20 extended pedigrees. Each extracted trio included a
unique set of parents. For nuclear families with more than
1 offspring, we randomly selected 1 offspring and formed
a trio with the parents. Specifically, the individuals were
grouped into families by the parents’ identifications, and 1
offspring was selected with equal probability to form a
trio. We only selected trios that had complete genotype
data for all 3 family members. Finally, 93 conditionally
independent trios were extracted from the GAW18 data.

SKAT and burden test for family-based design
The family-based SKAT proposed recently [7] can be
described as follows. For the ith trio, denote the speci-
fic region of the genome by G, the offspring trait by Yi
and the offspring genotype at the jth variant in G by
Xij (1 ≤ j ≤m), where m is the number of variants in
the region G. We assume a generalized linear mixed
effects model (GLMM) as follows: h [μi] = Ciα + Xiβ,
where μi = E (Yi), h(.) is a known link function, α is the
regression coefficients for the potential confounders Ci,
and β is the vectors of regression coefficients for the
m variants Xi , respectively. It is further assumed that
the coefficients, βjs, are independent random variables and
follow an unspecified distribution with mean 0 and var-
iance w2

j τ. Here wj can be considered as a weight that can
be a function of the data (such as genotype frequencies
estimated from the parents) or externally defined (such as
a functional prediction score). Under the GLMM assump-
tion, testing the null hypothesis of no genetic effect, that

is, all βs equal to 0, is equivalent to testing H0 : τ = 0, that
is, nonexistence of the variance component in the GLMM.
Similar to SKAT, the score test for a family-based design

is QS =
(
Y − μ̂0

)T
K̃(Y − μ̂0), where μ̂0 = Cα̂ for continu-

ous traits, μ̂0 = logit−1(Cα̂) for dichotomous traits, and

K̃ =
[
X − E(X|Xp)

]
WW

[
X − E

(
X—Xp

)]T is a weighted

linear kernel. For the kernel, X represents the offspring
genotype matrix, Xp represents the parental genotype
matrix, and W = diag(w1, . . . ,wm) represents variant
weights based on parental genotypes. In this study, we
define wj = Beta(f̂j; a, b), where f̂j is is the estimated variant
frequency based on parental genotypes. Under the null
hypothesis, E(X|Xp) can be calculated using the laws of
mendelian transmission. For the linear kernel, QS has a
simple expression: QS =

∑m
j=1 w

2
j [

∑N
i=1

(
Yi − μ̂i,0

)
(Xij − E

(
Xij—XP

ij

)
)]2,

where XP
ij is the parental genotype data for family i at var-

iant j. It can be shown that the test statistic QS has a limit-
ing distribution of a mixture of chi-square distributions.
Specifically, QS converges weakly to

∑m
j=1 λjχ

2
1,j, where

(λ1, . . . ,λm) are the eigenvalues of matrix A1/2LTWWLA1/2,
with LALT = Cov((X − E

(
X—Xp

)
)T(Y − Xα̂)|Xp,Y).

Originally, the family-based SKAT assumes that all
b coefficients are independently distributed. To allow
for possible correlation of effects among different
variants, a family kernel was proposed [2]:

K̃ =
[
X − E(X|Xp)

]
WRρW

[
X − E

(
X—Xp

)]T, where

Rρ = (1 − ρ) I + ρ11T specifies an exchangeable correla-

tion matrix. The test statistic is Qρ =
(
Y − μ̂0

)T
K̃ρ(Y − μ̂0).

When r = 0, Qρ equals Qs, where all b coefficients are
assumed independent. When r = 1, the test statistic

becomes Qρ = [
∑m

j=1 w
2
j

∑N
i=1

(
Yi − μ̂i,0

)
(Xij − E

(
Xij—XP

ij

)
)]2,

which is equivalent to the test statistics in the family-based
association test (FBAT) [8]. The p value was calculated
using the moment matching approach [9] or inverting the
characteristic function [10], as considered by Lee et al [11].

Analysis strategy
The goal of our analysis was to assess the power of
detecting association between the simulated quantitative
phenotypes (baseline SBP and DBP) and the causal
genes (from the simulation answer sheet) on chromo-
some 3 by the family-based SKAT and the burden test,
whether or not adjusting for different proportions of
causal variants. To ensure a fair comparison of power,
the empirical type I error rates of all tests were evalu-
ated by using the variable Q1 (a quantitative trait in the
simulation data set, simulated to be not associated with
any of the SNPs). To evaluate the power of tests, we
conducted the family-based SKAT and the burden test
for each causal gene using, respectively, baseline SBP
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and DBP as the response trait. Each of the 2 tests was
conducted separately by including rare variants only,
common variants only, and all variants of each gene.
Therefore, 12 tests were conducted at each gene. Table 1
describes the scenarios of the tests. The proportion of
causal variants among all variants in each gene (referred
to as strength of signal) may have impact on the power of
tests. To adjust for that proportion, we conducted an
analysis similar to the analysis in the unadjusted model
under varying proportions of the causal SNPs (10%, 25%,
and 50%). Then we performed another 36 analyses to
compare the power of tests. Considering that the effect
size of causal SNPs differs across SNPs, we fixed the cau-
sal SNPs included in all the scenarios, but diluted the
strength of signal by including differing numbers of non-
causal SNPs that are randomly chosen from each gene to
construct the proportion. For consistency and to prevent
a proportion of 0 signal, we included only causal genes
with at least 1 causal rare variant and at least 1 causal
common variant. Each analysis was conducted using all
200 simulated data sets.

Power comparisons
For the analysis without adjusting for proportion of cau-
sal variants in the gene, we used the generalized esti-
mating equation (GEE) [12] method to test for the
differences in power between scenarios, accounting for
the correlations induced by analyzing the same gene 12
times. Specifically, of the 200 simulations, let Yij denote
the number of successful rejection of the null hypothesis
for the jth test of the i>th gene, and pij the estimated
power for each test, i = 1,2,...31, j = 1,2,...12. We treated
the Yijs as correlated measures for the ith gene, and
then we constructed a binomial regression model using
GEE method to compare the power for each test:

yij ∼ Binomial(200, pij)

logit
(
pij

)
= β0 + β1I(SBPij) + β2I(commonij) + β3I(commonand rareij)

+ β4I(SKATij)

where β1 represents the difference in power for using
SBP rather than DBP as the outcome, β2 represents the
difference in power for using common variants instead
of rare variants, β3 represents the difference in power
for jointly using common and rare variants compared
with using rare variants only, and β4 represents the dif-
ference in power for using the family-based SKAT
rather than the family-based burden test. Here I(A)
denotes the indicator function, which equals 1 when A
is true and 0 otherwise. Additionally, these effects are
evaluated in similar model adjusting for the proportion
of causal variants in the gene where j = 1,2,...,36.

Results
Trio and causal SNPs
Using the approach stated in the methods section, we
extracted a total of 93 trios from the GAW18 data. Our
analysis focuses on chromosome 3 only. With knowl-
edge of the simulating model, the 31 causal genes were
available for the family-based SKAT and the burden test
of all SNPs. When examining different power to detect
the association under different proportions of causal
SNPs, only the 16 causal genes that contain at least 1
causal rare variant and at least 1 causal common variant
were included.

Gene-based test of all SNPs
We applied the family-based versions of the burden and
SKAT tests on the 93 trios for the gene-based associa-
tion test of the 31 causal genes, using the 200 simulated

Table 1 Scenarios of the 12 tests performed in comparing family-based SKAT and burden test using different types of
variants (i.e., common vs. rare) and different types of outcome (i.e., DBP vs. SBP)

Outcome Approach Variants included

DBP SBP Family SKAT Family burden Rare variants Common variants

Test 1 √ √ √

Test 2 √ √ √

Test 3 √ √ √ √

Test 4 √ √ √

Test 5 √ √ √

Test 6 √ √ √ √

Test 7 √ √ √

Test 8 √ √ √

Test 9 √ √ √ √

Test 10 √ √ √

Test 11 √ √ √

Test 12 √ √ √ √
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data sets. Variable Q1 (a quantitative trait in the simula-
tion data set that is not associated with any of the
SNPs) was used to test for type I error and the empirical
type I error rates are close to the nominal level of 0.05
with a range of (0.043 to 0.059), which is within the
95% confidence interval of the nominal level, that is,
(0.035, 0.065). An earlier study [7] also reported that
false-positive rates of the methods we applied were well
controlled using large simulations with considerable
sample size. Consequently, we used 0.05 as the critical
value when calculating power.
Figure 1 shows the power of correctly identifying cau-

sal genes at the a = 0.05 level. Plots in the left-side
panels show similar patterns to those in the right-side
panels, which is not surprising considering that SBP and
DBP are highly correlated phenotypes. According to the

simulating model, gene MAP4 has a strong signal. Our
results show both the family-based SKAT and the bur-
den test are able to detect MAP4.
In Figure 1C to F, we observed 2 peaks in the plots,

which are the results of genes PROK2 and SERP1. For
both genes, the peaks were observed only when com-
mon variants were included in the test. This finding is
consistent with the underlying simulating model, in
which almost all the causal SNPs in these 2 genes are
common variants. However, the family-based SKAT did
not show any power beyond type I error to identify
these two genes.

Testing under different proportions of causal SNPs
We conducted both the family-based SKAT and the
burden test in scenarios containing different proportions

Figure 1 Power of tests using all available SNPs in the data (a = 0.05). Plots in the left panels use SBP as a continuous outcome. Plots in
the right panels use DBP as a continuous outcome. All 6 plots use the same legend. Plots in the first row use SNPs with MAF ≤0.05. Plots in the
second row use SNPs with MAF >0.05. Plots in the third row use both.
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(ie, 10%, 25%, 50%) of causal SNPs in the analysis.
Figure 2 shows the results.
We did not observe a substantial impact of percentage

of causal SNPs on the power of both tests from the
plot, whether or not the analysis included rare variants.
The power of both the family-based SKAT and the

burden test is comparable across most genes. Two pro-
minent exceptions are the genes MAP4 and MLH1. In
Figure 2A, the family-based SKAT has much higher
power than the burden test when using rare variants
only in gene MAP4. The possible explanation is that the
causal rare variants in MAP4 affect SBP in different

Figure 2 Power of tests under different proportions of causal SNPs (a = 0.05). Plots in the left panels use SBP as a continuous outcome.
Plots in the right panels use DBP as a continuous outcome. All 6 plots use the same legend. Plots in the first row use SNPs with MAF ≤0.05.
Plots in the second row use SNPs with MAF >0.05. Plots in the third row use both.
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directions (also confirmed by the simulating model),
thus the burden tests lose considerable power because
causal variants b coefficients are in mixed directions.
When we included common variants in the analysis, the
power of the family-based SKAT decreased. This is a
result of very few common SNPs being causal in MAP4;
therefore, adding common variants increases the num-
ber of noncausal SNPs and dilutes the causal signals.
The burden test, however, had a slightly higher power
than the family-based SKAT in gene MLH1. Examina-
tion of the simulating model suggests that almost all
variants in MLH1 affect DBP and SBP in the same
direction, so it is not surprising that the burden tests
had comparable or better performance than the family-
based SKAT for testing the variants in MLH1.
Another interesting peak was observed at gene PTPLB1

(Figure 2E and 2F) when using 50% causal SNPs and
both common and rare variants. Both the family-based
SKAT and the burden test showed higher power than
other scenarios. The power is lower for testing either rare
variants only or common variants only, which suggests
that combining rare variants and common variants
together may increase the power of both tests.

Power comparisons
In addition to visually comparing power as presented in
Figures 1 and 2, we used GEE methods to more rigor-
ously compare the power under different scenarios. Spe-
cifically, we did not detect significant differences
(p value >0.3) in power between the family-based SKAT
and the burden test across all scenarios, whether we
adjusted for the proportion of causal variants or not.
However, after adjusting for proportions of causal var-
iants, we found that on average, the tests using common
variants only had less power compared to those using
rare variants only, followed by the tests using both com-
mon and rare variants. The test for overall difference in
power yields a p value of 0.04.

Discussion
Our analysis using the GAW18 simulated baseline pheno-
types and sequence genotypes with sample size of 93 con-
ditionally independent trios shows limited power of both
the family-based SKAT and the burden test. The low
power is most likely the result of using a small number of
trios and the weak signals in the simulating model. How-
ever, we found that both models adequately controlled the
type I error rates with only 93 trios. This agrees with the
results of simulation studies in [7], where a large number
of trios are considered (n = 500). Furthermore, after
adjusting for proportion of causal variants, we found sig-
nificant differences in power between tests using common
variants only versus tests using rare variants only or both

common and rare variants. Larger number of trios are
needed to confirm this finding as suggested by [13,14].
Recently, 2 methods using SKAT for family data have

been proposed [15,16]. Both of these methods take into
account the whole family structure by using a marginal
model with correlation structure specified by kinship
matrix. However, there is a subtle difference between
these 2 methods and our method. These 2 methods are
comparing allele frequencies as a population-based test
using the mixed-modeling framework to take into
account the correlation among the individuals within a
family, whereas our method is a transmission disequili-
brium type (TDT) test, which is conditioned on parental
genotypes and compares allelic transmissions. In the
absence of population structure, the population-based
association tests using the whole family are expected to
be more powerful than our method. However, in the
presence of population structure, the former tests may
lead to inflated type I errors whereas our method is
robust to population structure. Hispanic populations,
such as the one used in this study, are likely to be
admixed [17] and, therefore, the TDT-based method
remains robust to potential population structure.
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