Ding et al. BMC Proceedings 2014, 8(Suppl 1):525
http://www.biomedcentral.com/1753-6561/8/51/525

BMC
Proceedings

PROCEEDINGS Open Access

A 2-step penalized regression method for
family-based next-generation sequencing

association studies

Xiuhua Ding', Shaoyong Su?, Kannabiran Nandakumar', Xiaoling Wang?, David W Fardo'"

From Genetic Analysis Workshop 18
Stevenson, WA, USA. 13-17 October 2012

Abstract

multigenerational cohort.

Large-scale genetic studies are often composed of related participants, and utilizing familial relationships can be
cumbersome and computationally challenging. We present an approach to efficiently handle sequencing data from
complex pedigrees that incorporates information from rare variants as well as common variants. Our method
employs a 2-step procedure that sequentially regresses out correlation from familial relatedness and then uses the
resulting phenotypic residuals in a penalized regression framework to test for associations with variants within
genetic units. The operating characteristics of this approach are detailed using simulation data based on a large,

Background

As biological techniques for assaying genetic variation
have advanced, so have methods for candidate gene,
genome-wide, exome, and whole genome association
studies. In addition to methodological advancements
purely statistical in nature, each progression has resulted
in new analytical complexities, including those relating
to problems of assuring reliable data quality and hand-
ling massive multiple testing and computational chal-
lenges. Increasingly, the ability to analyze the complex
data resulting from genetic studies relies on having spe-
cialized software and vast computational resources.
Methods are needed that are able to appropriately
respect data complexity and are also accessible to inves-
tigators who wish to prevent an expensive computing
investment.

Family-based association methodologies in the specific
context of next-generation sequencing have been pro-
posed [1]. Like any approach incorporating related indi-
viduals, these methods must somehow either utilize or,
at the least, take into account, the dependence structure
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that necessarily exists within pedigrees. This within-
family information can be drawn upon for the sake of
inference as in transmission-based test statistics or,
alternatively, can be adjusted for to remove any depen-
dency that could violate independence assumptions of
the downstream statistical test. When a goal is computa-
tional simplicity, in the context of large, complex pedi-
grees it could be advantageous to perform a within-
family adjustment. The next-generation sequencing data
set generated from the Genetic Analysis Workshop 18
(GAW18) contains more than 8 million variants from
20 complex pedigrees, and is thus ideal to examine
these types of approaches.

The transition from designing genome-wide associa-
tion studies (GWAS) that rest upon the common dis-
ease and common variant hypothesis to exome and
whole genome studies that are better equipped to ascer-
tain effects from rare variations has resulted in much
interest for methods to group or aggregate variants in
order to test for the multiple rare variant hypothesis
that rarer variants of larger effect underlie common dis-
ease variation. In what follows, we present a method
that handles complex pedigrees in a computationally
accessible manner while also incorporating information
over a genetic functional unit.
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Methods

Data set

Whole genome sequencing for a subset of the San Anto-
nio Family Studies (SAFS) participants was conducted
through the Type 2 Diabetes Genetic Exploration by
Next-generation sequencing in Ethnic Samples (T2D-
GENES) Consortium. We examined the 1,215,399 variants
on chromosome 3 that were genotyped on the 955 fully
phenotyped subjects.

Statistical analysis
The simple and fast way to test the effect of a genetic mar-
ker on a trait is to use a contrast of the frequencies or
means among genotype groups in a linear model. How-
ever, this method does not explicitly take into account
relationships among family members when available,
which can lead to both false-positive and false-negative
associations. The use of a linear mixed model is a potential
solution to this problem when family-based data is avail-
able. These models adjust for familial relationships by
modeling the polygenic component between individuals as
a random effect but are computationally intensive.
Recently, Aulchenko et al [2] developed a rapid and robust
2-step method based on a mixed-model framework for
family-based association studies. The first step of this
method is to perform a single polygenic analysis using the
complete pedigree but ignoring marker data. Subse-
quently, the residuals from this analysis, which are now
adjusted for polygenic covariance and fixed covariate
effects, are used as an updated quantitative trait for asso-
ciation testing using classical methods for unrelated indivi-
duals. To our knowledge, however, this approach has not
been adapted to rare variant testing. We adopted this
2-step polygenic regression adjustment and residual test-
ing approach to test for both common and rare variants
by inclusion of a penalized regression step. We then
applied the method to the SAFS genome sequencing data.
Step 1: adjustment for family structure. First, we esti-
mated the kinship matrix, @, in the SAFS pedigrees
using a linkage disequilibrium-pruned subset of all com-
mon single-nucleotide polymorphisms (SNPs) genotyped
in 955 participants [1,2]. For the sake of comparison, we
also calculated the pairwise kinship coefficients based on
the provided pedigree structure [3]. These 2 approaches
for parameterizing relatedness were highly concordant
as expected (correlation = 0.962; average difference
0.003 + 0.006). Because genomic kinship coefficients do
not depend on the completeness and quality of pedi-
grees and can provide more accurate information on
ancestral relatedness than the given pedigree structure
[1,4], we used genomic-estimated kinship to adjust for
family structure in the following mixed model:

yi = i + Brage; + Brgender; + G; + ¢; (1)
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where y; is the phenotype of the ith individual, ¢ is a
grand mean, B; and B, are the fixed effects of age and gen-
der, and G; and e; are random additive polygenic and
residual effects, respectively, for individual i. The vectors
G and e, consisting of all polygenic and residual effects,
follow zero-mean multivariate normal distributions with
variance-covariance matrices 2®o¢ and I,02, respectively.
Here o is the additive genetic variance explained by the
kinship-based polygenic component, I, is an (1 x n) iden-
tity matrix, # is the number of subjects, and o is the resi-
dual variance. The following vector of polygenic residuals,
¥*, now has no dependence induced by familial relation-
ships and was estimated as V= &32 1(@* ) where ¢* is
the vector of trait values adjusted for covariates, that is,
y—(+ Bi age + B, gender), and i is the restricted maxi-
mum likelihood estimate of 2®02 + Io2. These residuals
were then used in the second step as quantitative traits
from unrelated individuals. The R package GenABEL was
used for this analysis [4].

Step 2: penalized regression including a gene-based
group penalty. Instead of using the linear model in the
original approach proposed by Aulchenko et al, we
applied a lasso-type group penalized regression to better
incorporate rare variants. This type of penalized regres-
sion has been applied to many forms of genetic analysis,
including microarray data [5] and GWAS data [6]. Fried-
man et al [7] introduced the mixture of group and lasso
penalties, and this approach has been explored using, for
example, breast cancer GWAS data for testing common
and rare variants [8]. In this study, variants were grouped
by genes and assigned a weight, s; = 2\/177(1 — p;), where
pj is the minor allele frequency for the jth SNP. The fac-
tor 2 makes the value of the weight range between 0 and
1. In our study, we adopted this method for the whole
genome sequencing data with the residuals generated via
step 1 from the family data. Briefly, we have an objective
function to be minimized that comprises the underlying
sums of squares from ordinary regression (first term)
modified by a conventional lasso penalty and, finally, the
group penalty, as below:

1
f©O) = Iy = NP5+ 2037 s8]+ e 3 talBalz (2)

where |.||, denotes the L? norm, SNP is an n x m
matrix of genotypes for the m SNPs, B is an m x 1 vector
of SNP effects, A1, and Ag are the lasso and group penalties,
respectively, and tG is a weight function operating on the
Gth group, often used to adjust for gene size. Here,
Bj represents the (fixed) effect of the jth SNP, and B¢
corresponds to (fixed) effects for SNPs within the Gth
group, where for our purposes G is defined by gene. The
use of the L? norm on the effects within a group
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encourages the incorporation of rare causal variants inside
the same gene. To test the power of this approach on rare
variants in particular, we further excluded common var-
iants (minor allele frequency [MAF] >0.05) and repeated
the analysis. These analyses were performed using the sta-
tistical software Mendel (Version 12.0) [9,10]. This version
did not, to our knowledge, incorporate t; weighting, so its
default of 1 was used throughout, giving equal weight to
all genes.

Results

We used GRCh37/hg19 build annotations to map chro-
mosome 3 variants to genes; 521,355 of the 1,215,399

Table 1 Causal gene characteristics.
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variants were located in a total of 1,165 genes. There
are 188 causal variants, ie, variants with nonzero effect
sizes for either diastolic blood pressure (DBP) or systolic
blood pressure (SBP) at exam 1; these map to 31 unique
genes. One hundred sixty-eight of these variants are
causal for DBP and 134 for SBP. Genes with at least 1
causal variant are here referred to as causal genes. Table 1
presents SNP counts and other descriptors for each causal
gene. Some variants used to simulate phenotypes lie
nearby but outside of the genes assigned via the GAW
simulation. As a result of these discrepancies, some causal
genes include no mapped causal SNPs, an apparent con-
tradiction. Interestingly, because we report on the

All variants Variants with MAF <0.05
Variant counts Causal Total heritability Variant counts Causal Total heritability

Gene Total Causal avg. MAF DBP SBP Total Causal avg. MAF DBP SBP
ABTBI1 48 2 0.08870 0.00070 0.00132 41 0 - - -
ARF4 161 0 - - - 108 0 - - -
ARHGEF3 2134 10 0.08890 0.00026 0.00007 1266 8 0.00986 0.00023 0.00006
B4GALT4 217 1 0.05110 0.00004 0.00002 127 0 - - -
BTD 291 8 0.00889 0.00041 0.00011 220 8 0.00889 0.00041 0.00011
CXCR6 0 0 - - - 0 0 - - -
DNASET1L3 115 7 0.140061 0.00023 0.00030 71 3 0.01900 0.00016 0.00025
FBLN2 687 4 0.02193 0.00021 0.00008 456 3 0.01073 0.00016 0.00006
FLNB 956 6 0.08682 0.00087 0.00280 636 5 0.00524 0.00002 0.00007
GPR160 244 2 021515 0.00004 0 165 1 0.00660 0.00001 0
LOC152217 7 1 0.07880 0.00002 0.00001 4 0 - - -
MAP4 894 15 0.06428 0.06483 0.07792 745 12 0.01048 0.05277 0.06336
MLH1 310 9 0.03816 0.00024 0 254 8 0.00409 0.00017 0
MUCT3 203 6 0.05675 0.00022 0 128 4 0.00790 0.00014 0
NMNAT3 559 9 0.07731 0.00036 0.00031 386 6 0.00903 0.00019 0.00017
PAK2 819 0 - - - 524 0 - - -
PDCD6IP 466 5 0.19472 0.00061 0.00028 319 2 0.02140 0.00004 0.00002
PPP2R3A 1081 12 0.01400 0.00046 0.00010 881 1 0.00461 0.00046 0.00010
PROK2 66 3 0.25297 0.00045 0 46 0 - - -
PTPLB 493 3 0.02483 0.00007 0.00006 334 2 0.00410 0.00005 0.00004
RAD18 694 2 0.19195 0.00004 0 448 1 0.00820 0.00004 0
RYBP 347 4 0.18135 0.00046 0 301 2 0.01660 0.00002 0
SCAP 207 2 0.00835 0 0.00004 176 2 0.00835 0 0.00004
SEMA3F 134 2 0.01145 0.00004 0.00001 83 2 0.01145 0.00004 0.00001
SENP5 409 5 0.00788 0 0.00007 279 5 0.00788 0 0.00007
SERPI 18 1 0.34670 0.00001 0 10 0 - - -
SUMF1 747 3 0.06460 0.00010 0.00008 527 2 0.00410 0 0
TFDP2 1221 5 0.00824 0 0.00005 855 5 0.00824 0 0.00005
TUSC2 Inl 0 - - - 10 0 - - -
VPS8 1042 6 0.00748 0.00025 0 847 6 0.00748 0.00025 0
ZBTB38 590 9 0.15292 0.00059 0.00090 415 4 0.00408 0.00003 0.00003

Characteristics of the 31 causal genes (genes containing at least 1 causal variant as provided by the GAW18 simulation details). Total and causal variant counts
are provided, as well as the average minor allele frequency for causal variants and the total gene-wide heritabilities for DBP and SBP. These metrics are provided
using all variants in chromosome 3 (All variants) and after removing common variants (Variants with MAF >0.05). Discrepancies in mapping variants to genes

between GRCh37/hg19 build annotations and the GAW18 simulations, result in some causal genes containing no mapped causal variants. Corresponding values

for these genes are denoted by a dash but are retained for consistency.



Ding et al. BMC Proceedings 2014, 8(Suppl 1):525
http://www.biomedcentral.com/1753-6561/8/51/525

proportion of simulation replicates that a SNP from a
causal gene is in the final penalized regression model
(Table 2), some causal genes with no causal SNPs are still
detected. For example, PAK2 contains 4 SNPs used to
model SBP and DBP, but, although none of these map
within PAK2 using GRCh37/hg19, PAK2 can still be found
in the fitted models.

Table 2 provides the gene-based probabilities of disco-
vering at least 1 SNP within each trait-specific (DBP or
SBP) causal gene using either a 90% or a 50% lasso weight

A A
(()»L +LAE) = )\L = 0.5), as suggested by Zhou et al [8],

Table 2 Detection probability for causal genes.
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and using all variants or only rare ones (MAF <0.05). For
each model, we chose the regression penalty parameter to
estimate the nonzero effects of approximately 134 variant
predictors. This number was chosen for convenience from
the number of causal SNPs for SBP. We examined other
choices for this parameter (data not shown) and, even
though not performing thorough cross-validation (a step
that is common for penalized regression approaches but is
not yet incorporated into Mendel), this appeared to pro-
vide a reasonable balance between capturing true and false
positives in the final model. We examined how varying the
relative contributions of the pure and group lasso penalties

DBP at exam 1

SBP at exam 1

Gene All variants <5% MAF variants All variants <5% MAF variants
0.5 09 0.5 0.9 0.5 0.9 0.5 0.9

ABTBI1 0.005 0.005 0 0 0 0.005 0 0

ARF4 0.005 0.005 0.025 0.025 0.020 0.020 0.035 0.035
ARHGEF3 0.025 0.125 0.110 0.185 0.030 0.130 0.100 0.155
B4GALT4 0 0 0.010 0.030 0 0 0 0

BID 0.005 0.030 0.020 0.025 0 0.025 0.010 0.015
CXCR6 0 0 0 0 0 0 0 0

DNASETL3 0.005 0.010 0.020 0.035 0.005 0.010 0.025 0.055
FBLN2 0.005 0.080 0.075 0.120 0.010 0.085 0.060 0.125
FLNB 0.035 0.110 0.095 0.130 0.120 0.360 0.100 0.140
GPRI160 0 0.015 0 0.005 0 0.005 0 0

LOC152217 0 0 0 0 0 0.000 0 0

MAP4 0.995 1.000 1.000 1.000 0.990 0.995 1.000 1.000
MLH1 0.010 0.015 0.020 0.030 0 0 0 0.005
MUCT3 0.005 0.015 0.065 0.120 0.005 0.020 0.045 0.100
NMNAT3 0015 0.040 0.010 0.040 0.015 0.045 0015 0.045
PAK2 0.005 0.045 0.030 0.055 0.010 0.035 0.030 0.060
PDCD6IP 0.010 0.015 0.015 0.020 0.010 0.020 0.015 0.015
PPP2R3A 0.005 0.005 0.035 0.045 0.010 0.015 0.025 0.025
PROK2 0.005 0.005 0.010 0.015 0 0 0.005 0.005
PTPLB 0.005 0.015 0.050 0.080 0.005 0.010 0.030 0.045
RAD18 0 0.035 0 0.005 0 0.020 0.005 0.005
RYBP 0.015 0.025 0.025 0.040 0.005 0.005 0.020 0.035
SCAP 0.180 0.185 0.260 0.260 0.150 0.155 0210 0210
SEMA3F 0.005 0.005 0.015 0.020 0 0 0 0

SENP5 0 0.010 0.030 0.075 0.005 0.015 0.010 0.020
SERP1 0 0 0 0.000 0 0.005 0.000 0

SUMF1 0 0.035 0.065 0.120 0 0.050 0.115 0.190
TFDP2 0.005 0.010 0.040 0.065 0 0 0.030 0.040
TUSC2 0 0 0 0 0 0 0 0

VPS8 0.005 0.030 0.050 0.095 0.015 0.020 0.090 0.130
ZBTB38 0015 0.090 0.085 0.140 0.005 0.070 0.080 0.200

The proportion of the 200 simulation replicates that each causal gene (contains at least 1 variant with a DBP or SBP effect) is present in the selected in the final

penalized regression model.

Each examined model specifies 134 predictors to be selected with nonzero regression coefficients using either a 50% or 90% weighting between the pure lasso

AL
and group penalties (ie,
L+AE)

= 0.5 or 0.9) and with either all variants or only those with MAF less than 5%.
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affects true-positive and false-positive rates. Figure 1
displays these rates for each of the 200 simulation repli-
cates when testing all variants. Results when restricting to
rare variants exhibit similar patterns, but have uniformly
higher rates because of the exclusion of causal and non-
causal genes with only common variants. An increase in
the proportion of penalty for the pure lasso results in
more distinct genes entering the final model, so both true-
positive and false-positive rates are higher.

MAP4 is consistently discovered using our approach,
which is not surprising because the variants within MAP4
confer more than 5% heritability for both DBP and SBP.
No other gene encompasses that amount of heritability for
either trait. In fact, the next highest heritability is that of
FLNB for SBP (0.28%), and the other genes are corre-
spondingly much less reliably detected. A few genes
(eg, ARHGEF3, FLNB, and SCAP) are discovered with at
least 10% probability in some models, although it is diffi-
cult to infer with confidence any pattern of characteristics
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for detection when these are so low. It appears that detec-
tion probability increases with more weight placed toward
the pure lasso penalty, which is consistent with Figure 1.
Restricting analysis to rare variants improves causal gene
detection at least partially, as a result of the reduction in
the number of genes considered, while retaining the same
number of variant predictors in the model; for some genes
(eg, FLNB, MUC13, SCAP, and ZBTB38) the improvement
is considerable. Some interesting patterns in results from
Table 2 can be attributed to gene characteristics in
Table 1. For example, FLNB shows a markedly higher
detection probability when testing SBP with all variants
using a 90% lasso proportion; this discrepancy is because a
common causal variant unique to SBP is removed from
consideration when examining only common variants and
is more reliably detected with pure lasso.

Per-gene false-positive rates are reasonably maintained
(all below 0.03%), partially because of the upper bound
constraint that the penalty tuning parameter imposes.
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Figure 1 Gene-based ROC curve. Gene-based false-positive and true-positive rates plotted when employing a 50% and 90% lasso proportion
on each trait (SBP and DBP) at exam 1 over the 200 simulation replicates. These plots are for models including all variants. Rates are defined as
the number of distinct noncausal genes (genes containing no causal variants) in the final model divided by the total number of noncausal
genes (False-positive rate; x-axis) and the number of distinct causal genes (genes with at least 1 causal variant) in the final model divided by the
number of true causal genes (True-positive rate; y-axis). There are 27 (22) causal genes for DBP (SBP) and 1138 (1143) noncausal genes. Random
“jitter” has been added to the y-axis because many replicates resulted in the same number of causal genes and a loess line with confidence
bands illustrates a general trend. Results when using the 5% MAF restriction are similar, but with higher rates as a result of the decreased
number of genes.
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That is, because only approximately 134 variants can enter
the final regression model, there is a limit to the number
of times each noncausal gene can be falsely discovered.
False discovery rates (ie, the proportion of genes in the
final models that are noncausal) are large, often above
90%, which is a known problem with penalized regression
strategies.

Discussion

Methods for handling complex pedigrees are varied and
are often computationally intensive. The advent of next-
generation sequencing exacerbates these complexities. We
have proposed a novel method for approaching this pro-
blem that is easily implemented in freely available software
packages and eases computational burden by regressing
out correlations caused by familial relatedness in an initial
step, preventing the estimation of often complex mixed
models for each variant under consideration.

We chose to use a kinship matrix estimated based on
genomic data to adjust for family structure because this
confers several advantages over pedigree kinship [1,4,6].
First, it does not depend on the completeness and quality
of the pedigree. For example, if one child is adopted but
this information is not provided, the genomic kinship can
give the correct estimation, while the pedigree kinship will
classify the child as the first-degree relative of the parents
and the sibs, which can induce bias. Second, genomic kin-
ship may give a better estimate of a true covariance
between individual genomes, while pedigree kinship pro-
vides only the expectation of the proportion of genome
shared identical by descent. Third, genomic kinship can be
incorporated in the presence of potential population strati-
fication. Therefore, the use of genomic kinship is expected
to lead to better estimates of polygenic model, and thus
better power to detect association.

Methods that group variants within genes and treat the
gene as a functional unit, as in the group lasso portion of
our approach, can efficiently borrow information across
the gene without necessarily testing the disease-influen-
cing variants. We find that, in the context of the GAW18
simulated data, our method can successfully and consis-
tently discover disease genes with sufficient heritability,
but is largely underpowered when heritability is below
0.03%. More exploration of the proposed approach
through simulation is warranted to examine cross-valida-
tion strategies for choosing lasso parameters, the related
effects of linkage disequilibrium structure, and private var-
iants. Notably, private variants (ie, those unique to a pedi-
gree) will not likely be detected using our proposed
methodology. The incorporation of tracking genetic trans-
missions will be required to do so, and any method that
treats familial relatedness as a nuisance, as we do, in order
to utilize test statistics for independent subjects will be
severely underpowered for these variants.
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